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Abstract

Artificial agents are often trained to play
Lewis-style referential games, but such games
often lead to uninterpretable communication
and encourage development of only a limited
subset of the rich capabilities of human lan-
guage. Instead, we propose games where
agents must learn to communicate about sets
of objects encoding abstract visual concepts,
and show that speaking in generalizations im-
proves systematicity of the learned languages.

1 Introduction

To build agents that can communicate and collab-
orate effectively with others, recent research has
trained agents to communicate for Lewis (1969)-
style signaling games (Figure 1a). A general con-
sensus of this work is that without carefully man-
aged environmental pressures (see Lazaridou et al.
2020 for review), agents tend to develop communi-
cation protocols distinctly unlike human language:
non-compositional (Andreas, 2019; Chaabouni
et al., 2020), anti-Zipfian (Chaabouni et al., 2019),
and generally uninterpretable (Kottur et al., 2017).

We argue that the reference games typically used
in these studies are ill-suited for linguistic system-
aticity. One reason is perceptual: agents can exploit
inscrutable patterns in single inputs, which leads
to communication via spurious features (Boucha-
court and Baroni, 2018). Another reason is cog-
nitive: human language can convey abstract ideas,
such as kinds and causes, not just referring ex-
pressions. Simple reference games are unlikely to
drive emergence of such language. In particular,
generalization about categories is a crucial part of
language (Tessler and Goodman, 2019), helping us
transfer knowledge that will be useful in unseen en-
vironments. Some have even argued that language
emerged precisely due to the need to teach others
through generalizations (Laland, 2017).

As an alternative to reference games, we pro-
pose training agents in extensions of Lewis-style
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Figure 1: Communication games for the concept red
triangle. Given a set of targets (red borders) and dis-
tractors, a teacher must send a message to help a stu-
dent identify the targets. In (a) reference games, targets
are identical; in (b) setref, there are multiple targets;
and (c) concept, the agents see different inputs.

signaling games to sets. In the set reference (setref)
game, a teacher must communicate to a student not
just a single object, but rather a group of objects
belonging to a concept (Figure 1b). In the concept
game, each agent sees disjoint images (Figure 1c).
Inspired by human teaching (Chopra et al., 2019),
our core insight is that requiring generalization to
combinatorially large sets of (possibly unseen) ob-
jects encourages agents to learn and communicate
rich abstractions across inputs (e.g. seagulls), in-
stead of low-level features (e.g. color #FDA448).
These tasks are more difficult than traditional ref-
erence games, and we will show that the resulting
languages are more systematic and compositional.

2 Communication Games

We will first describe a generic communication
game between a teacher T and student S. Let G =
(c,XT

, Y
T
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S
, Y

S) be a communication game,
where c is a latent concept to be communicated,
X

T = {xT1 , . . . , xTn} is a set of n inputs presented
to the teacher, and Y

T = {yT1 , . . . , yTn } is a set of
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student. Given targets and distractors, the teacher
must send a message m to a student that allows
them to correctly identify their own targets, where
m = (m1, . . . ,mn) is a discrete sequence over a
fixed alphabet mi 2 M.

Reference game. Here, the teacher and student
see the same examples (XT = X

S , Y T = Y
S)

and every target input is the same, i.e., xT
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Set reference (setref) game. The teacher and
student see the same examples, but there are multi-
ple target images (e.g. different red triangles).

Concept game. The teacher and student see dif-
ferent examples (XT 6= X

S , Y T 6= Y
S) of the

same concept. When X
T and Y

T contain a single
positive and negative example, this is a reference
game with separate inputs for each agent, a setup
which has previously been shown to encourage lin-
guistic systematicity (Lazaridou et al., 2017) .

3 Models

We will now formalize our models of the teacher
and student. In this context, a teacher is a distribu-
tion over messages given inputs pT (m | XT

, Y
T ),

and a student is a distribution over targets given an
message p

S(Y S | XS
,m) =
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,m).

Teacher. The teacher encodes all inputs with a
convolutional neural network (CNN) fT

✓
; embed-

dings for targets and distractors are averaged to
form positive and negative class prototypes (Snell
et al., 2017), which then conditions a recurrent neu-
ral network (RNN). Let XT

+ and X
T
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sets of targets and distractors in X
T ; then define a

prototype embedding c
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(analogously for cT�). Then pT (m | XT , YT ) =
RNN-DECODE(m | proj([cT+; c

T
�])) where proj

is a linear projection to the RNN hidden state.

Student. The student takes a message and makes
predictions about the label ŷS

i
for each input xS

i
.

Given the teacher message and an input image,
1For ease of comparison, we present an atypical formula-

tion of a reference game with multiple identical targets and
student target decisions made independently for each input,
instead of the single-target forced-choice setting. Appendix C
shows that results do not change with traditional games.
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Figure 2: Example sets of targets (red border) and dis-
tractors for ShapeWorld (top) and Birds (bottom), with
corresponding concepts represented as intensional log-
ical formulas and extensional sets of input features.
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We train a teacher-student pair end-to-end with
the Gumbel-Softmax trick (Jang et al., 2017), to
maximize the likelihood of the student picking the
correct targets over a set of games in the domains
described below. For full details, see Appendix A.

4 Tasks

We explore two datasets: first, an artificial shape
dataset which allows us to evaluate communication
over cleanly defined logical concepts; second, a
dataset of birds to test agents’ ability to extract
concepts from realistic visual input.

ShapeWorld. We use the ShapeWorld visual rea-
soning dataset (Kuhnle and Copestake, 2017, Fig-
ure 2, top). For reference games, target images
are a single object, defined by a conjunction of a
shape and a color; of the 30 possible shapes, we
hold out 6 (20%) for testing. For setref and con-
cept games, concepts are defined as disjunctions or
conjunctions of (possibly negated) shapes and/or
colors. This produces 312 concepts, 20% of which
are held out. For each game, sets consist of 10 ran-
domly sampled targets depicting shapes that satisfy
the concept, and 10 distractors. We specifically
sample “hard” targets and distractors to test un-
derstanding of conjunctions or disjunctions (see
Appendix B for details). For this dataset, we use
an agent vocabulary of 14 tokens and maximum
length 5 (mimicking the true concept formulas).

Birds. We next use the Caltech-UCSD Birds
dataset (Wah et al., 2011) which contains 200
classes of birds with 40–60 images (Figure 2, bot-
tom). As before, reference games involve a single
target; setref and concept game targets are mem-



bers of a specific bird class. We use 100 classes
at train and 50 at test, sampling 5 targets and 5
distractors per game. The dataset contains boolean
attributes (e.g. beak, size) for individual birds and
classes.2 Thus, we represent reference game con-
cepts as the feature vector of the target bird, and
setref/concept game concepts as the feature vector
of the class. In our evaluation, we will measure
how well agent languages capture these features.

For these experiments, we set the vocabulary
size to 20 and the maximum message length to 7.

5 Evaluation

Besides measuring communication success, de-
fined by student accuracy on held-out games from
seen and unseen concepts, we evaluate the system-
aticity of the agents’ languages with the following:

H and AMI. We compute simple information
theoretic quantities between the agent mes-
sages and concepts: the conditional entropy of
messages given concepts, H(M |C), and the
adjusted mutual information AMI(M,C) =
(I(M,C)� E(I(M,C))) /(max(H(M), H(C))
�E(I(M,C))) (Vinh et al., 2010). A lower
H(M |C) indicates more consistent language
for each concept; higher AMI indicates better
alignment between messages and concepts.

Topographic ⇢. A finer measure of composition-
ality often used in the literature (Lazaridou et al.,
2018; Li and Bowling, 2019; Lazaridou et al., 2020)
is topographic ⇢ (Brighton and Kirby, 2006). We
define a distance metric between game concepts
dC(c1, c2) and another between agent messages
dM (m1,m2), compute pairwise distances between
concepts and messages, and measure their align-
ment with Spearman’s ⇢. A high ⇢ indicates that
similar messages are produced for similar concepts.

For messages, we use the Edit (Levenshtein)
distance with equal insert/delete/replace costs. For
game concepts, we define two distances based on
intensional and extensional concept representations
(Figure 2). First, Edit distances between string
representations of logical formulas. Second,
Hausdorff distance dH between the sets of inputs
defined by concepts. Let Za = {za

i
} be the set of

feature-based inputs belonging to concept a. Then
dH is the maximum distance from a point in one

2Feature vectors for individual birds in a class vary due
to the visibility of features in the image; class vectors are
averaged across all individual birds, then rounded to 1 or 0.

Acc Seen Unseen H(M |C) AMI

ShapeWorld

Ref 97 (0.5) 96 (0.8) 6.2 (0.5) 0.07 (0.0)
Setref 84 (2.0) 83 (1.8) 4.0 (0.7) 0.30 (0.1)
Concept 80 (1.9) 78 (1.3) 1.6 (0.2) 0.53 (0.0)

Birds

Ref 93 (0.3) 89 (0.1) 5.9 (0.2) 0.05 (0.0)
Setref 89 (0.2) 78 (0.2) 5.2 (0.1) 0.17 (0.0)
Concept 88 (0.1) 73 (0.3) 4.1 (0.2) 0.26 (0.0)

Table 1: Student accuracy (seen and unseen concepts),
conditional entropy of messages given concepts (lower
is better), and adjusted mutual information score (2
[0, 1]; higher is better), with (SD) across 5 runs.

set to the closest point in the other: dH(Za
, Z

b) =
max(supi d(z

a

i
, Z

b), supj d(z
b

j
, Z

a)), where
d(a,B) = infb2B EditDistance(a, b).

6 Results

Table 1 shows test accuracy on communication
games over seen and unseen concepts for the best
validation models. Reference game performance
is high across both datasets, and agents are able
to generalize well to unseen concepts at test time.
Accuracy on setref and concept games are lower for
both datasets, with a considerable drop of 10–15
points for Birds when generalizing to novel classes.
Overall, communicating sets and concepts seems
to be a much harder task than concrete reference,
and thus an interesting avenue for further work.

The ability to communicate accurately, even on
held-out games, is not necessarily indicative of
more systematic communication; generalization
without compositional language is a common find-
ing (Kottur et al., 2017; Andreas, 2019; Chaabouni
et al., 2020). Instead, the more difficult games
produce more systematic language. Compared to
ShapeWorld reference games, concept game en-
tropy over messages is much lower (1.6 vs. 6.2),
and AMI much higher (0.53 vs. 0.07); setref is
somewhere in the middle; this difference also oc-
curs in Birds. Additionally, Figure 3 shows topo-
graphic ⇢ between the languages and the edit and
Hausdorff concept distances, which is consistently
higher for concept and setref throughout training.

Figure 4 (more examples in Appendix E) shows
messages generated by agents for the concept red
triangle. At one extreme, reference agents use a
huge variety of messages to refer a red triangle,
while concept agents consistently use deeee/edeee,
and setref is somewhere in the middle.3

3We also show that concept and setref agents are more sys-
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Figure 3: Topographic ⇢ between language and edit (top) or Hausdorff (bottom) concept distances for training and
test splits across both datasets. Results from 5 runs plotted, with averages in bold.
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Figure 4: Distribution of 300 messages (starting from
center and proceeding outwards) and entropies for the
concept red triangle in ref, setref, and concept settnigs.
Each color corresponds to a unique token. Bottom
right: distribution of entropies over concepts for a sin-
gle model (a more detailed view of the data in Table 1.)

Set Size. Figure 5 shows how the number of pos-
itive targets n (with equal numbers of distractors)
affects language systematicity. n has a statisti-
cally significant effect on topographic ⇢ for Shape-
World setref (Spearman ⇢ = 0.82, p < 10�7) and
concept (⇢ = 0.71, p < 10�4) and Birds setref
(⇢ = 0.89, p < 10�5) and concept (⇢ = 0.54, p =
0.017). When n = 1, the setref game is equivalent
to a reference game with 1 target and 1 distractor,
and the concept game is similar, but with agents

tematic when evaluated on reference games; see Appendix D.
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Figure 5: Topographic ⇢ (concept edit distance) with
varying number of targets (average over seen/unseen
splits). Each point and Ref line is an independent run.

given separate inputs. Our results suggest that this
decoupling, as done in Lazaridou et al. (2017), pro-
motes systematicity in some cases (Birds) but not
others (ShapeWorld). We additionally show that
(1) sets are an alternative way of encouraging sys-
tematicity without needing this separation, and (2)
even with this separation, larger set sizes improve
systematicity across both datasets.

7 Conclusion

We have proposed extensions of referential games
to sets of objects, and found that the need to convey
generalizable categories leads to the development
of more systematic languages, whether targets are
shared (setref) or unshared (concept) across agents.
One interesting avenue for follow up work is iden-
tifying whether the structure of the more sophis-
ticated logical concepts are reflected in the agent
languages, perhaps using recently proposed tools
for measuring compositionality (Andreas, 2019).

8 Reproducibility

Code and data are available at github.com/
jayelm/emergent-generalization.

github.com/jayelm/emergent-generalization
github.com/jayelm/emergent-generalization
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