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Abstract

Temporal grounding aims to predict a time in-
terval of a video clip corresponding to a natural
language query input. In this work, we present
EVOQUER, a temporal grounding framework
incorporating an existing temporal grounding
model and a video-assisted query generation
network. Given a query and an untrimmed
video, the temporal grounding model predicts
the target interval. Afterward, the predicted
video clip is fed into a video translation task
by generating a simplified version of the in-
put query. Our framework forms closed-loop
learning by taking into account both the loss
functions from the temporal grounding task
and loss functions from the translation, serv-
ing as feedback. Our experimental results on a
widely used dataset, Charades-STA, show that
EVOQUER achieves promising improvements.

1 Introduction

Temporal grounding locates the video content that
semantically corresponds to a natural language
query, addressing the temporal, semantic align-
ment between vision and language. It is a key
issue in many video understanding tasks such as
visual storytelling (Lukin et al., 2018; Huang et al.,
2016), video caption generation (Krishna et al.,
2017; Long et al., 2018), and video machine trans-
lation (Wang et al., 2019b). Given a query and an
untrimmed video, the goal of temporal grounding
is to find the time interval in a video that expresses
the same meaning as the query.

Recent work on temporal grounding has
achieved significant progress (Mun et al., 2020;
Chen and Jiang, 2019; Chen et al., 2018; Zhang
et al., 2019; Gao et al., 2017). These works em-
phasize modeling the semantic mapping of verbs
and nouns in the text query to visual clues such as
actions and objects that indicate the candidate time
intervals. Most of them employ a uni-direction
learning flow by using a single task. Inspired by

Figure 1: An overview of our closed-loop system pipeline.
multi-task learning for temporal grounding (Xu
et al., 2019), this work explores the possibility of
enhancing the temporal grounding model with re-
lated tasks. To this end, we borrow the idea of
feedback-error-learning (FEL) from control theory
and computational neuroscience (Kawato, 1990;
Gomi and Kawato, 1993). Using a closed-loop
system, the control network learns to correct its
error from feedback and gains stronger supervision
to stimulate learning. We investigate if a temporal
grounding model can be improved by incorporating
another network for feedback generations, forming
a closed-loop learning flow.

More specifically, we adapt a video-pivoted
query simplification task that simplifies the query
to shorter phrases with verbs and noun phrases
only. Visual pivots in translation task have proved
to be effective as they provide more fine-grained
semantic discrepancy associated with words (Chen
et al.; Lee et al., 2019). We propose a novel frame-
work, EVOQUER (Enhancing Temporal Grounding
with VideO-Pivoted Back QUERy Generation), in-
tegrating a text-to-video and a video-to-text flow,
as shown in Figure 1. The pipeline pairs a state-
of-the-art temporal grounding model LGI (Mun
et al., 2020) with a video machine translation
model (Wang et al., 2019b) for query simplifica-
tion. Given a query and an untrimmed video, the
pipeline predicts the time interval, feeds the video
clips extracted from prediction with the original
query to the translation model, and generates sim-
plified query. We evaluate EVOQUER on a temporal
grounding dataset, demonstrate promising results
from interval prediction performance and qualities
of simplification output, and analyze the output for



future improvements in later sections.

2 Related Work

Previous work regarding text-to-video temporal
grounding has been based on identifying relation-
ships between an event and its corresponding query.
Approaches can be split into three major categories:
strongly supervised (Anne Hendricks et al., 2017;
Gao et al., 2017; Liu et al., 2018; Chen et al., 2018,
2019; Chen and Jiang, 2019; Ge et al., 2019; Ghosh
et al., 2019; Zhang et al., 2019; Yuan et al., 2019;
Mun et al., 2020; Rodriguez et al., 2020), weakly
supervised (Tan et al., 2021), and reinforcement
learning (Wang et al., 2019a; He et al., 2019).

Our work belongs to the supervised learning
framework. The primary example of a strongly
supervised approach being used is the LGI algo-
rithm (Mun et al., 2020). This work achieves the
most state-of-the-art performance on the Charades-
STA dataset. The output of this algorithm are
time intervals, each predicted using word-level
and sentence-level attention.Within our closed-loop
framework, we utilize this LGI algorithm as a
“black box" to achieve the best performance on
supervised temporal grounding.

Other tasks also emphasize Text-to-Video. Here
we list two that are most similar to temporal ground-
ing. Text-to-Video moment retrieval focuses on
grounding between query and video (Xu et al.,
2019; Lin et al., 2020; Liu et al., 2018), framing the
task as to retrieve frames, slightly different from
temporal grounding.

The other relevant task is video captioning
aiming to generate a description of text given a
video (Das et al., 2013; Yao et al., 2015; Venu-
gopalan et al., 2015a,b; Xu et al., 2015; Zhou et al.,
2019, 2018a). Recent developments have utilized
end-to-end transformer models for video caption-
ing (Zhou et al., 2018b).

3 EVOQUER Framework

Our goal is to design a closed-loop framework for
the temporal grounding task such that the model
receives supervision in predicting time intervals
as well as feedback from the output video fea-
tures extracted from the prediction. To achieve
this, we propose a framework involving two com-
ponents: a temporal grounding model and a trans-
lation module. The temporal grounding model
predicts time intervals given an untrimmed video
and a query. The translation module takes input

from queries and video features trimmed by the
predicted intervals, and outputs a simplified query
with only verbs and nouns. Recall that we use the
LGI model (Mun et al., 2020) for temporal ground-
ing, which achieved state-of-the-art performance
using supervised learning. For query simplification,
we use the video machine translation framework
VMT (Wang et al., 2019b).VMT is proposed for
video-assisted bilingual translation, for example,
between Chinese and English, and achieves reason-
able results.

Our pipeline is presented in Figure 2. The in-
put to the framework is an untrimmed video and
a set of queries. Following Mun et al. (2020), we
use I3D frame-based features for video representa-
tion and an embedding layer inside a text encoder
for word representation. Given the video features
and queries, LGI predicts time intervals with the
content corresponding to a given query. Next, we
extract frames from videos trimmed by the pre-
dicted interval to represent the content of the video
clip. To maintain the continuity of the content,
we extract 32 frames per video clip in a way that
the content of the trimmed videos is evenly dis-
tributed across all 32 frames. Since the camera
used captures 24 frames per second, a 32-frame
video roughly spans 1.3 seconds. We feed the ex-
tracted video features and input query into a trans-
lation module consisting of two biLSTM-based
encoders and an LSTM-based decoder with atten-
tion. Video hidden states and text hidden states are
sent individually to two attention modules, while
being concatenated into one vector representation
and sent to the decoder as initial hidden states. In
the attention network, temporal attention is learned
through video features, and soft attention through
query hidden states. The attention is fed into the
decoder as context representation.

Instead of learning to decode the original query,
we want the model to focus on the words that dis-
tinguish the video content: verbs and nouns. In
the Charades dataset, annotators who generated the
query tend to use various verb tenses when describ-
ing the video activities. For example, annotators
could use both “closes the door" and “closing the
door" on the same video content. Therefore, we
lemmatize the words, label the query with part-of-
speech (POS) tags, and extract verbs and nouns
as simplified versions of the queries. The decoder
learns to predict simplified queries and computes
a negative log likelihood (NLL) loss at the end of



Figure 2: Our EVOQUER framework combines a LGI model for temporal grounding and a translation module that outputs
simplified queries.

the decoding. Finally, we combine the NLL loss
with the LGI loss computed earlier to update the
networks.

In addition, we experiment with an alternative
setting of the translation module: we only generate
simplified queries from the video input and add
a loss to explicitly enforce the mapping between
video features and text features. We keep the text
encoder to generate text hidden states, and apply a
visual embedding (VSE) loss proposed in Faghri
et al. (2018) to learn the joint embedding between
text and video based on their cosine similarity. The
neural network is trained end-to-end to jointly opti-
mize the three loss functions (LGI, NLL, VSE).

4 Experiments

In this section, we present our experiment on the
Charades-STA dataset using EVOQUER and EVO-
QUER +VSE. Results include time interval predic-
tion and simplification output. EVOQUER shows
promising improvements over the other settings.

4.1 Dataset and evaluation metrics
We evaluate our framework on Charades-STA (Gao
et al., 2017), a widely used benchmark data set
for temporal grounding (Mun et al., 2020). It is
comprised of 9,848 roughly 30-second videos of
daily human activities. Each video corresponds
to a set of queries created by annotators watching
these videos. There are 27,847 textual queries in
total provided for the videos, with each having a
maximum length of 10 words.Of these queries, we
set the train/valid/test as 50%, 25%, and 25%.

We adopt two conventional evaluation metrics
for temporal grounding tasks: R@tIoU measur-
ing recall at different thresholds for temporal in-
tervals between ground truth and prediction, with
the threshold set as 0.3, 0.5, and 0.7; mIoU report-

Model R@0.3 R@0.5 R@0.7 mIoU
LGI 71.54 58.08 34.68 50.28
EVOQUER 71.57 57.81 35.73 50.48
EVOQUER +VSE 70.46 57.81 35.51 50.16

Table 1: Results on Charades-STA test set from the LGI
model and two EVOQUER variants.

ing the average of temporal interval recall from
all threshold levels. For query simplification, we
evaluate the predicted queries with two metrics.
Jaccard similarity measures intersection over union
between words in ground truth and in prediction.
Since it does not penalize for duplicated words,
Jaccard similarity gives us a rough estimation for
the quality of translation output. BLEU (Papineni
et al., 2002) is a standard evaluation metric for ma-
chine translation that measures n-gram word over-
lap. Most of the simplified queries are two-word
length, thus we report BLEU unigram and bigram.

4.2 Temporal grounding results

Table 1 presents results on the Charades-STA test
set from a re-trained LGI model and EVOQUER

models.1 Compared to LGI, EVOQUER shows im-
provement on R@0.7 and mIoU, especially 1.05
on R@0.7, the hardest threshold for temporal inter-
val overlap. EVOQUER also outperforms LGI on
R@0.3 and mIoU;however, there are some drops
on R@0.3 and mIoU with VSE.

Table 2 presents statistics of samples where our
model show improvements and drops compared to
LGI. We divide the samples into four categories
according to their recall: when EVOQUER is higher
than the LGI, when EVOQUER is lower than the

1Using the codes from the author’s GitHub and the param-
eters presented in the original paper, we train the LGI model
on Charades-STA train set from scratch. We suspect the dif-
ference between our replication and results presented in the
paper is attributed to initialization.



Both >= R@0.3 Both
EVOQUER ↑ EVOQUER ↓ Same <R@0.3

Cnt. 441 362 1347 777

Table 2: Counts of samples that are scored by R@tIoU with
four categories from comparison between EVOQUER and LGI
model. Three of the categories are from samples where both
models achieve recall equal and above threshold 0.3: samples
that are improved (EVOQUER ↑), samples with performance
drops (EVOQUER ↓), and equal performance with at least
R@0.3 (Same). The fourth category is when both perform
below R@0.3 (Both <R@0.3).

Model JaccSim BLEU1 BLEU2
EVOQUER 51.98 53.04 42.47
EVOQUER +VSE 6.37 7.96 1.20

Table 3: Translation quality measuring by Jaccard similarity,
BLEU Unigram (BLEU1) and Bigram (BLEU2).

LGI, when both have the same recalls that are
at least R@0.3, and when both scores are below
R@0.3. EVOQUER shows improvements from 441
samples that are above 0.3 recall threshold, suggest-
ing promising results. There are 777 cases where
both models perform poorly, showing more room
for improvements. To summarize, this preliminary
results show that EVOQUER could bring potential
benefits to the temporal grounding task.

4.3 Translation output analysis

We compare translation output from two EVO-
QUER variants. This comparison could help us
identify the components that are critical to video-
assisted machine translation. Results are shown
in Table 3. Although both frameworks show simi-
lar trends in performance of the temporal ground-
ing task, their translation quality have a large
difference:EVOQUER shows good scores, while
EVOQUER +VSE shows significantly lower per-
formance. This shows that both video features and
text features are critical to translation.

5 Discussion

In this section, we show output examples of pre-
dicted intervals and simplified queries to under-
stand the model performance. Figure 3 shows two
video clips trimmed by the ground truth interval,
the queries, and predicted simplification. In the
first example, EVOQUER predicts interval overlap-
ping with ground truth and correctly translates the
verb and noun close door. EVOQUER +VSE in-
accurately predicts the verb open instead of close.
Judging from the video content, the door was al-
ready closed; thus, an open door action must oc-
cur before the close door. Given that EVOQUER

Figure 3: Two example video clips trimmed by ground truth
intervals. In the first example (top), EVOQUER successfully
predicts time interval and simplified queries as ground truth. In
the second example (bottom), EVOQUER fails to predict time
interval. Simplified queries predicted by EVOQUER +VSE are
also presented.

+VSE only takes video content as input to decoder,
we suspect the features of open door are stronger
than close door thus captured by the decoder in
EVOQUER +VSE. In the second video, EVOQUER

predicts an interval rarely intersecting with ground
truth. We review the video and find that at 5.97s,
the person in the video starts the action open the
refrigerator door and pours milk into a glass. Ad-
ditionally, at 16.4s, he finishes pouring and puts
the milk back into the refrigerator (shown as the
first picture of Figure 3 bottom). Meanwhile, he
is holding the glass and leaving the refrigerator
door open. Although EVOQUER fails to intersect
with the gold standard, it captures the action open
the door at 5.97s, showing its capability in under-
standing the video content. We suspect EVOQUER

thinks that the person is holding a bag instead of
a gallon of milk since both are white in color and
similar in size. Thus, it predicts hold bag instead
of hold glass. Our future work will extend the ex-
periments on other temporal grounding datasets to
better validate EVOQUER performance.

6 Conclusion

We propose a novel framework, EVOQUER, for
temporal grounding that incorporates a query sim-
plification task. It forms closed-loop learning
and provides feedback to the temporal grounding
model and enhances the learning. Our experiments
demonstrate promising results on predicting time
intervals and query simplification. Future work will
explore more settings and extend to other datasets.
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