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Abstract

We present an end-to-end neural network to
translate images containing text from one lan-
guage to another. Traditionally, a cascaded ap-
proach of optical character recognition (OCR)
followed by neural machine translation (NMT)
is used to solve this problem. However, the cas-
caded approach compounds OCR and NMT
errors, and incurs longer latency, performs
poorly in multiline cases. Our simplified ap-
proach combines OCR and NMT into one end-
to-end model. Our neural architecture follows
the encoder-decoder paradigm, with a convo-
lutional encoder and an autoregressive Trans-
former decoder. Trained end-to-end, our pro-
posed model yields significant improvements
on multiple dimensions, (i) achieves higher
translation accuracy due to better error prop-
agation, (ii) incurs lower inference latency due
to smaller network size, and (iii) translates mul-
tiline paragraphs and understands reading order
of the lines, (iv) eliminates source side vocab-
ulary. We train several variations of encoders
and decoders on a synthetic corpus of 120M+
English-French images and show that our ap-
proach outperforms the cascaded approach with
a large margin in both the automatic metrics
and the detailed side-by-side human evaluation.

1 Introduction
Instant image translation refers to the problem of

taking an image containing text in a source language,
translating the text to a target language, and replacing
the image with that text in real-time. The commercial
implementations of such a feature are Google Trans-
late’s Instant Camera mode (Goo, b,c) and Google Lens
(Goo, a), both of which seamlessly replace text in the
source language with a translation in the target language.
The camera translation feature shown in Figure 1 uses
a cascade of a text detector network, a text recognizer
network, and a NMT network. The text detector net-
work is a region proposal network (RPN) which uses
variants of Faster-RCNN (Ren et al., 2015) and SSD

∗The work was performed during author’s internship at
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Figure 1: Image Translation Overview

(Liu et al., 2016) to find character, word, and line bound-
ing boxes. The text recognizer network is a convolution
neural network (CNN) with an additional quantized
long short-term memory (LSTM) network trained with
CTC loss (Graves et al., 2006) to identify text inside the
bounding box. Finally, NMT is a sequence-to-sequence
network which uses variants of LSTM and Transformers
(Vaswani et al., 2017; Goo, d) to translate the identified
text. Figure 2 demonstrates the entire flow.
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Figure 2: Image Translation Cascade Approach
The cascaded approach works fairly well on short

sentences but it suffers in multiline cases. The primary
reason for poor accuracy being the lack of understand-
ing of document structure. While in a well formatted
document such as newspapers or books, the document
structure is relatively easy to identify, but it is much
harder in real world scenes. The document structure re-
quires learning the order in which disparate OCR lines
or words should be concatenated to form a logical sen-
tence or paragraph. For instance, imagine a case of a
restaurant menu where prices of the dishes are listed
next to multiline dish names and ingredients. In this
case, multiline ingredients should be translated together
isolated from the price. The current generation OCR
engines lack this understanding, therefore translation is
either performed at a line level or heuristics are used
to form sentences – often resulting in a bad translation



result. Another issue with the cascaded approach is er-
ror propagation. A common error in OCR engines such
as “I" or “L" being interpreted as “1" could completely
change the meaning of a translation. While some of
this noise can be smoothed by NMT using OCR text as
the source during training, exhaustive error correction
is still hard.

In this paper, we propose to fuse several of the cas-
caded models into a single image translation network, re-
ferred as “ItNet". ItNet shown in Figure 3 is a sequence-
to-sequence model which follows the encoder-decoder
paradigm of NMT (Sutskever et al., 2014). But con-
trary to NMT, which operates on the encoding of source
sentence, ItNet operates on the output feature map gen-
erated by the CNN on input pixels. ItNet overcomes the
limitations of a cascaded approach and provides addi-
tional benefits on top. Working directly with pixels also
overcomes issues related to vocabularies, segmentation,
and tokenization on the source side. It achieves much
higher accuracy with a smaller network size, thereby
providing speedup at inference time, and it takes less
compute. Finally, ItNet could act as a stepping stone
to build an image-to-image translation model in the
future—directly emitting the translated image as the
output, avoiding the complex rendering required to over-
lay translation on top of the source image.
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Figure 3: Image Translation Fused Approach

2 Image Translation Model
2.1 Neural Machine Translation Background

We briefly explain the encoder-decoder paradigm
for NMT. Encoder-decoder paradigm consists of a se-
quence encoder fenc that takes an input sequence of
tokens x = (x1, . . . , xn) of length n and produces a
sequence of hidden states h = (h1, . . . , hn), formally
h = fenc(x). Once the sequence of hidden states are
generated, the decoder fdec generates the output se-
quence y = (y1, . . . , ym) of length m, one token at
a time in an autoregressive fashion given the source
sequence hidden states h and previously generated (out-
puts) prefix y<j

1, formally fdec(y<j |h). Putting it all
together, the encoder-decoder model generates an out-
put sequence y by modelling the conditional distribution
P (y|x) given an input sequence x with the following
factorization P (y|x) =

∏m
j=1 P (yj |y<y,h).

Once an output sequence is generated, which is deter-
mined by emitting of a special end-of-sequence token,
the generated hypothesis output sequence is y is com-
pared against a reference output sequence in order to as-
sess the translation quality. A commonly used automatic

1Here y<j indicates the tokens generated previous to the
target sequence position at j, where j is in range 1 to m.

metric, called BLEU (Papineni et al., 2002), measures
the n-gram precision of the hypothesis weighted by the
brevity penalty in order to penalize short translations.2

2.2 Network Design
Vanilla encoder-decoder architectures for transla-

tion utilize sequence encoders/decoders in order to pa-
rameterize fenc and fdec. The most commonly used
parametrization of these functions follow a either Trans-
former (Vaswani et al., 2017), or an LSTM network
(Sutskever et al., 2014). In our proposed ItNet , we
simply replace the fenc function to be a convolutional
neural network in order to input an image, rather than
a sequence of tokens, and keep the decoder function
fdec intact, namely keep using a Transformer decoder
(self-attention, cross-attention cascade).

2.3 Dataset
To the best of our knowledge, there is no public

dataset available for image translation research. There-
fore, image synthesis remains the lowest cost option
at this time. We train ItNet on a corpus of 119.5M
synthetic images. These images are constructed from
an English-French corpora of parallel sentences used
to train NMT models. The training set contains about
112.4M long sentences ranging from 10 to 50 words
(130 tokens), 7M short sentences ranging from 3 to 10
words (10.3 tokens), and 115K single word sentences
(1.4 tokens). We use an image synthesis tool which
generates one image per sentence pair at 640x480 res-
olution. The synthesis tool generates images based on
a configuration. A different configuration is generated
for each sentence pair during the synthesis process by
selecting a random font from a list of pre-installed fonts,
a random font size from a range of 20 pixels to 50 pixel,
a random font style, and various other parameters such
as blur, random noise etc. The final result of the syn-
thesis process is fairly random, given the multitude of
parameters. Figure 4 shows one such example from
our tool. As evident, images only render the source
sentence and target sentences are used as ground truth.
To convert target sentences into embeddings, a target
side vocabulary is constructed from the data set. The
ItNet decoder is initialized from a respective text-to-text
model decoder after training the NMT model on the
same parallel corpora of English-French sentences. Fi-
nally, a similar process is followed to generate ItNet test
sets from corresponding NMT test sets. For ease of un-
derstanding, this paper reports the result on the images
generated from the publicly available WMT 2013 test
set only.

Figure 4: Example image from WMT testset

2Briefly, BLEU= bp · exp(1/4
∑4

n=1 log pn), where bp
is the brevity penalty, and pn are the n-gram precision.



2.4 Training
We use Lingvo (Shen et al., 2019) to implement the

base text-to-text NMT model and ItNet. We train It-
Net in two steps. We first train a text-to-text transformer
model (referred to as the base model). In our base model
both encoder and decoder contain 6 layers each. The
number of heads in multi-headed attention is set to 16
and model dimension is set to 1024. Our vocabulary
contains 16000 word pieces. The hidden state dimen-
sions are set to 2048. We use an Adam schedule with
a learning rate of 1.0, a dropout probability of 0.1, and
warm up steps of 50000. We then train our base model
for 1M steps. The base model training takes about 3
days to complete on our platform.

In the second step, we pick the latest checkpoint
from the base model and initialize ItNet training with
it. We use an identical decoder as the base model and
therefore only the ItNet decoder gets initialized this way.
Our encoder is a ResNet-101 model and we use Xavier
initialization for it. We use transformer learning rate
schedule with a learning rate of 0.1 and 80000 warm up
steps throughout this work. We use a batch size of 8 for
training and 64 for evaluation. It is important to note that
the output of the encoder in the format Batch × Height
×Width × Num Filters needs to be reshaped to match
the input of an NMT decoder in Time × Batch ×Model
Dimension format. This is to make sure that the number
of filters in the encoder maps to the model dimension
of the decoder and the 2D activation’s of the encoder
maps to the time dimension of the decoder. Therefore,
we apply a reshape operation to each 2D feature map to
convert them to a 1D vector of size (

∏
Height.Width).

This creates the Time dimension for the decoder. We
subsequently apply a transpose to switch Batch and
Vector dimensions to match the ordering expected by
the decoder. We train ItNet for 1M steps.

3 Experiments and Analysis
We present the experiment results ItNet on WMT

2013 test set. Methodology to render WMT test set on
images is described in Section 2.3. Due to randomness
during image synthesis, not all sentences in the test
set can be rendered into an image. We fix font size to
be between 20 and 30. Our final synthesized test set
contains 1414 images.

3.1 Side-by-Side Human Evaluation
To perform side by side evaluation, we create a tem-

plate containing three images and seven possible ratings
with zero being a “Non-Sense" and six being “Perfect".
We provide them with additional details on what does
each rating imply, such as a “Non-Sense" imply “nearly
all information is lost between the translated image and
original image" while “Perfect" implies “the meaning of
the translation is completely consistent with the original
image and the grammar is correct".

The images in the template are ordered in a grid as
follows: source language image, translation from the
first system followed translation from the second system.

We provide no system names or implementation details
in the template to the raters. Raters at a time see only
one task and we ask their rating on two systems (named
“sys0" and “sys1") based on the displayed output. We
rate each image thrice to reduce rater biases. A total
of 1414 images in our test set results into 4242 tasks
for a pool of 120 raters. A rater never rates the same
image twice. Additional constraints such as time limit
to complete a task and a maximum number of tasks per
rater are imposed. All raters are professional linguists
with expertise in English as well French language.

We average the three ratings to construct final rating
of the image. We further divide results into cases where
ItNet performs better than the baseline, performs equal
to the baseline, and performs worse than the baseline. If
a system performs better than or equal to the baseline in
majority of cases, it is considered to be significant from
product launch standpoint. To be precise, if the average
rating of the new system exceeds the baseline by 0.1
rating point, the new system is typically considered to
be ready to replace the baseline in production system.
3.1.1 Baseline System

We compare ItNet with a cascaded system consisting
of client side OCR and server side NMT. Client side
OCR model at a high-level consists of convolution en-
coder, LSTM decoder, and CTC loss. The server side
NMT consists of transformer/LSTM encoder and de-
coder with additional pre and post processing steps.
Both of these models are meticulously trained on a
plethora of data and highly optimized to achieve best
accuracy in their class. The client side OCR model per-
forms ondevice recognition and sends recognized text
lines to a server running NMT inference. Note that these
text lines often contain only a part of the incomplete
sentence. Therefore, NMT model on the server side
translates only part-sentences. These returned transla-
tions are in-place rendered back on the image. These
rendered images are then shown to the raters for side-
by-side ratings against ItNet .

In the aforementioned S×S evaluation, ItNet outper-
forms the baseline in 46.4% cases while gets an equal
rating in 37.6% cases. In minority 16% cases, ItNet
performs inferior to the baseline.
3.1.2 Multiline Variations

One of the key contribution of ItNet is it’s ability to
perform multiline translations. Figure 5 plots rating
difference between ItNet and the baseline. Each bar
represents average of the rating difference grouped by
the number of lines in the images.

ItNet consistently outperforms the baseline, generally
showing higher gains with the increasing number of
lines. Importantly, ItNet outperforms the baseline in
case of single line cases as well. This is interesting
since it is indicating that not all gains in ItNet can be
attributed to multiline handling. This implies that ItNet
is alleviating some of the information loss happening
due to cascaded approach and it is building an ability to
correct OCR errors during translation. Note that there



Label Model Dims Layers Heads
Shallow-Thin 512 2 8

Deep-Thin 512 6 8
Shallow-Wide 1024 2 16

Deep-Wide 1024 6 16
Table 1: Decoder labels to parameter mapping

were only handful of images with number of lines > 13
in the dataset, attributing to spikes in the chart.
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Figure 5: Avg rating difference between ItNet and the baseline,
grouped by the number of lines in the image

3.1.3 Encoder and Decoder Size Variations
We study how variations in encoder and decoder size

affects model accuracy. As mentioned before, accuracy
of a NMT model is measured by bleu score. We report
results for five different encoders (ResNet and DarkNet)
and four different decoders (variants of transformer).
Encoders used here have been well established in the
computer vision literature. Table 1 maps transformer
decoder labels to their parameters. All other parameters
are kept the same across different models.

Figure 6 reports the total number of network parame-
ters in each combination of encoder-decoder. ResNet-
101 and DarkNet-53 are fairly similar models, therefore
so are the total number of parameters in them. ResNet-
101 with transformer deep-wide contains about 151M
parameters. Figure 7 shows bleu scores achieved by
different models on WMT 2013 test set. The missing
bars in ResNet-18 are due to lack of convergence of
those combinations on our data. We could not train any
stable model on them due to their smaller capacity. As
expected, larger capacity lends to higher bleu score at a
high level. But for a given encoder, Deep-Thin decoders
outperform Shallow-Wide which is smaller in its size
than their counterpart. We notice that increasing encoder
size for ResNet-18 to ResNet-50 provides large jumps
in gains but the same subsides between ResNet-50 and
ResNet-101. ResNet-101 with Deep-Wide decoder out-
performs all other scheme, however it is also the largest
model we trained. Importantly, DarkNet-53 which is of
similar size as that of ResNet-101 performs inferior to it.
It performs more closely to ResNet-50 which is a much
smaller model. All S×S scores reported above were
on DarkNet-53 and Deep-Wide combination – a model
we training during initial investigations. We could not
redo S×S on a better combination of ResNet-101 and
Deep-Wide due to budget issues.
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Figure 6: Parameters (millions) in ItNet variants
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Figure 7: Bleu score of ItNet variants

4 Related Work

Text preprocessing and vocabulary construction has
been an active research area leading to work on NMT
systems operating on subword units (Sennrich et al.,
2015), characters (Lee et al., 2017) and bytes (Wang
et al., 2020) and has been highlighted to be one of the
major challenges when dealing with many languages
simultaneously in multilingual NMT (Arivazhagan et al.,
2019), and cross-lingual natural language understanding
(Conneau et al., 2019).

Multimodal MT is an application of NMT which
helps computers to understand visual objects and their
relations with natural languages. Image GPT (Chen
et al., 2020; Ramesh et al., 2021) fuses boundaries be-
tween the two areas further by shows that a transformer
model trained on pixel sequences can generate coherent
image completions and samples similar to a transformer
model trained on text. Some of the problems in this
space are translating source sentences that describe an
image into target language or directly describing an im-
age in target language other than English (Elliott et al.,
2016; Elliott et al., 2017). (Liu et al., 2017) shows trans-
lation results on various multimodal tasks such as street
scene image translation, animal image translation, and
face image translation. (Mansimov et al., 2020) attempt
to render translations back to the source image - an
extension of this work which could enable true end-to-
end image translation. (Caglayan et al., 2016; Huang
et al., 2016; Su et al., 2019) show that providing visual
cues to encoder can improve text only translation accu-
racy. Finally, image transformer (Parmar et al., 2018)
generalizes architecture to image generation problem.
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