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Abstract
Automatically translating images to texts in-
volves image scene understanding and lan-
guage modeling. In this paper, we propose a
novel model, termed RefineCap, that refines
the output vocabulary of the language decoder
using decoder-guided visual semantics, and
implicitly learns the mapping between visual
tag words and images. The proposed Visual-
Concept Refinement method can allow the
generator to attend to semantic details in the
image, thereby generating more semantically
descriptive captions. Our model achieves su-
perior performance on the MS-COCO dataset
in comparison with previous visual-concept
based models.

1 Introduction

Holding the promise of bridging the domain gap
between computer vision and human language,
image-to-text translation, a.k.a image captioning,
has lately received great attention in both commu-
nities (Johnson et al., 2016; Chen et al., 2017; An-
derson et al., 2018; Fan et al., 2019). Combining
image scene understanding and language gener-
ation, it aims to translate descriptive texts given
corresponding images.

Existing work maintained that frequently oc-
curred n-grams of reference captions in the training
set are preferred in the caption generation, regard-
less of image contents (Fan et al., 2019). Visual
concept (i.e., tag) prediction is proposed to leverage
the visual semantics from images for generating
relevant words (Wu et al., 2016; You et al., 2016;
Gan et al., 2017; Yao et al., 2017; Fan et al., 2019).
It predicts the probability of each semantic con-
cept that occurs in the corresponding image out
of the selected image-grounded vocabulary from
reference captions, for the use of following caption
generation.

However, most of them adopted Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) as the language decoder, in which
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Figure 1: Schematic illustration of proposed models,
where “text” indicates previous words of the captions.

sequence-align recurrence inherently precludes par-
allelization in practice. Initially proposed for neural
machine translation (NMT), Transformer (Vaswani
et al., 2017) architecture has made rapid progress
in numerous applications, such as NMT (Ott et al.,
2018; Gu et al., 2019), image generation (Parmar
et al., 2018), automatic speech recognition (Dong
et al., 2018), computer games (Vinyals et al., 2019),
etc. We adopt Transformer blocks rather than RNN
to support parallel training in our model.

Intuitively, when describing an image, people
often take much time to “think” of the words
to generate coherent functional words, and just
“look” at the image regions occasionally for con-
tent words. Similarly, for image captioning, only
content-related words are actively matched with the
image, whereas other functional words can often
be automatically inferred using a language model.

The adaptive attention model (Lu et al., 2017)
found that not all generated words are actively re-
lated to visual contents—some words can be reli-
ably predicted just from the language model, such
as “phone” after “taking on a cell”. Also, non-



visual words like “the” can be generated with the
language model inference.

Grounding on this, we introduce a language-
decoder-guided gate to regulate visual-concept vec-
tors, followed by a scatter connection layer to map
each element of the image-grounded vector to the
corresponding position in the decoder’s vocabulary.
This jointly takes into account what the captioner
“thinks” via the language model and what it “looks”
at with the dynamic visual-semantic concept vec-
tor. In this paper, we propose RefineCap, a visual-
concept-aware refined encoder-decoder architec-
ture to dynamically modulate the visual-semantic
representations and thus enhance the output of lan-
guage model. Within the proposed model, visual
signals are decoder-regulated and the content-based
gate removes the independent assumption of visual
objects in the attention mechanism.

Our work illustrates that image-grounded con-
cept detection advances the performance of
Transformer-based encoder-decoder captioning ar-
chitecture by incorporating the visual-semantic rep-
resentation using reinforcement learning. Our key
contributions are as follows:

• A scatter-connected mechanism to refine the
language decoder using extracted visual se-
mantics, which produces more specific de-
scriptive words in caption generation.

• A competing model that outperforms the pre-
vious visual-concept based captioning models
on the MS-COCO dataset.

2 Methodology

Fig. 1 shows an overview of the proposed model.
We use an object detector to extract visual object
features and a relational encoder to capture the pair-
wise relations among detected objects (Sec. 2.1).
Then visual-concept components learn the implicit
visual tags in the image. The Transformer lan-
guage decoder receives the extracted object fea-
tures (Sec. 2.2), followed by a scatter connection
mechanism (Sec. 2.3) for decoder refinement.

2.1 Transformer as Relational Encoder

Following (Anderson et al., 2018), we use Faster
RCNN (Ren et al., 2015) with ResNet-101 (He
et al., 2016) as the object detector. We extract the
object proposals using Region Proposal Network
and mean-pooled convolution to generate the 2048-
dimensional proposal feature.

Let X = [x1x2 · · ·xM ]> ∈ RM×2048 denote

the extracted M visual proposal features of each
image. We use a fully connected layer to reduce
the spatial feature of 2048 into D = 512. Then we
apply the standard Transformer encoder with layer
number Nenc to capture the object-wise relation as
in (Zambaldi et al., 2018). The output of encoder
is represented as F = [f1f2 · · · fM ]> ∈ RM×D.

2.2 Transformer Decoder
Given the caption sequence with the length of T ,
we apply a standard Transformer decoder of Ndec
layers as the caption generator. The input sequence
firstly passes into word embedding and sinusoidal
positional embedding layers, followed by a masked
self-attention sublayer attending to previous histo-
ries. Then a cross attention sublayer as in Vaswani
et al. (2017) is applied to capture the multi-modal
attention between each word and extracted object
features, followed by a position-wise feed-forward
layer (FFN). All sublayers are encompassed by a
residual connection (He et al., 2016) and layer nor-
malization (Ba et al., 2016).

2.3 Visual-Concept Refinement
Visual Concept Layer The visual concept layer
is designed to extract the probability of common
concept words, such as noun and verbs. We em-
ploy the K most frequently occurring words whose
POS tags are nouns, verbs, or adjectives as the
image-grounded concept vocabulary set Vtag. Fol-
lowing (Gan et al., 2017), K is set to 1,000 in
our experiment. For each image, the visual con-
cept layer projects its visual object features fm
(m = 1, · · · ,M ) into a (K/M)-dimensional vec-
tor, and then concatenates M different visual out-
puts to get the K-dimensional concept representa-
tion. Then we apply an activation function to get
the probability of each concept word in Vtag, which
is a multi-label binary prediction.

v = f1W0‖f2W0‖ · · · ‖fMW0 (1)

v̂ = σ(v) (2)

where W0 ∈ RD×K/M denotes trainable weights,
‖ denotes the concatenation along the last axis,
σ(x) = 1/(1 + exp(−x)), fm ∈ RD (m =
1, 2, · · · ,M ) is the m-th object feature out of M
visual proposals. v̂ ∈ RK represents the visual
concept vector, in which each element represents
the confidence of image-grounded concept words.

Denoting the decoder output at t-th time step
(t = 1, 2, · · · , T ) by ht ∈ RD, we compute the



context vector ct by considering the interaction be-
tween the t-th decoder output and all encoded fea-
tures F in one image, followed by a non-linearity
g (we use sigmoid function here) to produce the
decoder-guided gate for concept-aware modulation.

ct = u> tanh(W1h
t +W2F) (3)

gt = g(W3c
t) (4)

where {W1,W2} ∈ RD′×D,u ∈ RD′
,W3 ∈

RK×M are parameters, D′ represents the interme-
diate hidden dimension.

At t-th time step, the visual-concept vector v̂ is
modulated by the decoder-guided gate gt to render
the final refined representation ot:

ot = gt � v̂ (5)

where � indicates the element-wise product.

Scatter-Connected Mapping Since the selected
image-grounded vocabulary Vtag is the subset of
caption vocabulary Vcap, i.e., Vtag ⊂ Vcap, we ap-
ply scatter-connected mapping by adding the corre-
sponding element of Vtag onto Vcap to enhance the
confidence of concept word prediction:

ht[j] =

{
ht[j] + ot[k] if Vcap(j) = Vtag(k)
ht[j] otherwise,

(6)

where Vcap(j) and Vtag(k) indicate the correspond-
ing concept in the j-th position of caption vocab-
ulary set and k-th word of concept vocabulary set.
[.] is tensor indexing operation. Then a softmax
function is applied afterward to get the probability
over all caption vocabularies.

2.4 Training with Policy gradient
Captioning as Reinforcement Learning The
image captioning task is cast to the RL problem:
the policy network RefineCap, defined as πθ pa-
rameterized by θ, takes an action at at t-th time
step for each observation (i.e., image) to predict the
next word wt until reaching the rollout end. The
return G for each rollout is defined as CIDEr-D
scores (Vedantam et al., 2015) between hypothesis
and ground-truth captions.

We leverage the REINFORCE with baseline al-
gorithm to reduce the gradient variation. The pa-
rameter θt+1 is updated as follows:

θt+1 = θt + α(Gt − b)∇ lnπ(·) (7)

where b takes the average of batch returns, α is the
learning rate.

3 Experiments

3.1 Experimental Setup

Dataset and Evaluation We experiment on the
MS-COCO dataset (Lin et al., 2014) and report
the performance on Karpathy offline splits, con-
sisting of 113,287/5,000/5,000 images for train-
ing/val/test sets, in which each image is paired with
5 human annotations. We empploy BLEU (Pap-
ineni et al., 2002), ROUGE-L (Lin, 2004), ME-
TEOR (Denkowski and Lavie, 2014), CIDEr-
D (Vedantam et al., 2015), and SPICE (Anderson
et al., 2016) as evaluation metrics.

Implementation Details We set the embedding
dimension D to 512, the layer numbers of both
encoder and decoder as 3 (for fast training), batch
size of 50, head number h as 8, the hidden dimen-
sion of FFN layer as 2,048, the maximum num-
ber of extracted features as 50. Word embeddings
are randomly initialized. We employ Adam opti-
mizer (Kingma and Ba, 2014) with β1 = 0.9, β2 =
0.98 as in (Li et al., 2019). To avoid over-fitting,
we set the dropout rate as 0.1, and early stopping
patience as 5 during training. The beam width is
set as 5 during beam search decoding. To initial-
ize the model weights for RL training, we pretrain
the model with supervised learning using cross-
entropy loss with the same setting. All experiment
are trained on a single NVIDIA Tesla V100 GPU.

3.2 Results

Table 1 exhibits the performance of visual-concept
based image-to-text translation models on MS-
COCO dataset, in which the proposed model out-
performs baseline models by a clear margin.

Ablation Test Table 2 shows that the proposed
method boosts the CIDEr scores on standard Trans-
former for image caption generation, indicating
the proposed visual-semantic module and scattered-
connection mechanism promote the CIDEr-D score
in contrast with other baseline models.

Qualitative Analysis Fig. 2 illustrates the gen-
erated caption samples, where the detected visual
concepts advance the quality of predicted captions.
As shown in Fig. 2 bottom left, discovered visual
tags enhance the adequacy of generated captions,
such as “tie” with the confidence of 1, which is not
mentioned in ground truth. Our model adds “near
the ocean” as the adverbial modifier in comparison
with baseline in the bottom right.



Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METER ROUGE-L CIDEr SPICE

SemAttn (You et al., 2016) 0.709 0.537 0.402 0.304 0.243 - - -
Att-CNN+LSTM (Wu et al., 2016) 0.74 0.56 0.42 0.31 0.26 - 0.94 -
LSTM-C (Yao et al., 2017) - - - - - 0.230 - -
Skeleton Key (Wang et al., 2017) 0.673 0.489 0.355 0.259 0.247 0.489 0.966 0.196
SCN-LSTM (Gan et al., 2017) 0.728 0.566 0.433 0.330 0.257 - 1.041 -
Bridging (Fan et al., 2019) - - - 0.330 0.264 0.586 1.066 -
Ours 0.802 0.645 0.499 0.378 0.283 0.580 1.272 0.225

Table 1: Overall performance of the proposed model and visual-concept based models.

Visual concept:
  blue(1), yellow(1), giraffe(1), young(1),       
  standing(1), brown(1), green(1), big(1),   
  food(1), grass(0.991), walking(0.980),   
  field(0.983)
Baseline: three giraffes are standing in a field 
  of tall grass.
Ours: two giraffes and other animals standing 
  in a field.Reference: 

  A giraffe grazing on a tree in the wilderness with other wildlife.
  Several giraffes eating leaves from the ground and tree.
  Two giraffes and another animal in a field.
  Several giraffe eating the leaves from neighboring trees.
  Giraffes are feeding on the trees and grass.

Visual concept:
  black(1), young(1), woman(1), sitting(1), 
  person(1), red(1), wooden(0.999), hand(0.997)

Baseline: a woman sitting in the woods talking  
  on a cell phone. 
Ours: a woman sitting on a suitcase in the 
  woods.

Reference:  
  A woman sitting on a piece of luggage in a field.
  A woman sits on a brief case in the woods. 
  A girl with a lot of tattoos sitting on a piece of luggage.
  A woman with lots of tattoos sits on a suitcase in a forest. 
  Lady with arm full of tattoos sitting on her suitcase.

Reference: 
  A man sitting next to a woman while wearing a suit.
  Two people are posing for a photograph together
  A black and white photo of a couple.
  A black and white photo of a man and woman
  A man and a woman are posing for a photograph.

Visual concept:
  man(1), white(1),picture(1), person(1), 
  young(1), black(1), tie(1), wearing(1), 
  couple(0.953), suit(0.910)

Baseline: a man and a woman posing for a 
  picture.
Ours: a man in a suit and tie standing next to a 
  woman. Reference:  

  A herd of buffalo grazing on grass next to the ocean.
  A herd of black sheep grazing near the shore
  A field full of wild animals next to a beach.
  A group of animals grazing next to a beach and ocean.
  A herd of large wholly sheep walk near a beach.

Visual concept:
  blue(1), food(0.996), white(0.990), 
  grass(0.990), large(0.967), field(0.955), 
  sheep(0.895), group(0.869), young(0.840), 
  eating(0.587)

Baseline: a herd of sheep grazing on the beach.
Ours: a group of sheep grazing on a beach near 
  the ocean. 

Figure 2: Detected tags and generated captions using baseline (Transformer) and proposed models on MS-COCO,
where red and green backgrounds indicate wrong and correct predictions respectively. The value in brackets means
the confidence (i.e., probability) of corresponding tags in the image.

Model BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Ours 0.802 0.378 0.283 0.580 1.272 0.225
w/o refinement 0.786 0.366 0.277 0.570 1.202 0.210

Table 2: Comparison with standard Transformer.

Better Accuracy Transformer baseline without
the proposed method sometimes generates mis-
matched words, which can be reliably rectified by
the proposed method. For example, in upper left
of Fig. 2, our model correctly predicts the presence
of “two giraffes and another animal” but baseline
identifies them as “three giraffes” by mistake.

Better Adequacy Our model can capture more
specific details and meaningful contents in the im-
age background that might be ignored by the base-
line or even omitted in the ground truth. For exam-
ple, as shown in Fig. 2 (bottom left), the proposed
model predicts the occurrence of “tie” which is
overlooked by both the baseline and ground truth.

Implicit Visual Concept Modeling We found
that the detected concepts can exactly match se-
mantic objects in the image. Notably, such visual-

concept detection can be treated as the side effect of
the scatter-connection mappings since the proposed
method implicitly learns the visual mapping from
the visual objects to visual-concept vocabulary (as
aforementioned in Sec. 2.3), instead of using an ex-
plicit training objective for learning such mapping.

To investigate the necessity of explicit visual-
concept learning, we design further experiments by
pre-training the visual-concept detector for multi-
label binary classification before training the cap-
tion generator. We empirically find it unnecessary
to pretrain the visual-concept detector before the
caption generation, as shown in Sec. A.3.

4 Conclusion

We proposed a new visual-concept based image
captioning framework to generate meaningful de-
scriptive sentences. Leveraging visual concepts
and scatter mapping, RefineCap demenstrates its
effectiveness on the MS-COCO dataset.
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A Appendices

A.1 Case Study of Generated Captions
Fig. 2, 3, 4 manifest the comparison between the
baseline and proposed models, with the presence of
visual concepts and their corresponding confidence
(presented in brackets) for each image.

Visual-Concept Indication The proposed
method implicitly learns the connection between
visual concepts and image regions without explicit
training on the visual concept detector. Further
analysis can be found at Appendix 2.

Better Adequacy It can be seen that our model
can capture more specific details and meaningful
contents in the image background that might be ig-
nored by the baseline or even omitted in the ground
truth. For example, as shown in the bottom left
in Fig. 2, the proposed model predicts the occur-
rence of “tie” which is overlooked by both the base-
line and ground truth. Other examples like “ocean”
at the bottom right of Fig. 2, “store” at bottom
left example of Fig. 3a, “ocean” at upper left in
Fig. 4a, “a ground of people ... around” at the
upper right Fig. 4a, “kitchen” at the bottom left
of Fig. 4a, “clock” at upper left in Fig. 4b, “store”
at upper right in Fig. 4b, “street sign” at bottom left
in Fig. 4b, “basket” at bottom right in Fig. 4b, etc.
We found that captions generated by the proposed
model could achieve better scores in terms of the
adequacy.

Better Accuracy Meanwhile, captions decoded
by the proposed models equip better accuracy. For
instance, in upper left of Fig. 2, our model predicts
the presence of “two giraffes and another animal”
but baseline identifies them as “three giraffes” by
mistake. Other proofs, such as “suitcase” in the
top right of Fig. 2, “living room” in the top left of
Fig. 3a, “ a body of water” in the top right of Fig. 3a,
“flags” in the bottom right of Fig. 3a, “suitcase”
and “floor” in the top left of Fig. 3b, “floor” in
the bottom left of Fig. 3b, etc. Wrongly predicted
words are marked in red in the examples. It can
be concluded that the proposed model can produce
image descriptions in a more accurate manner.

A.2 Additional Details for Experiments
We use SpaCy‡ as the tokenizer and pos tagger to
process the reference captions, with lowercase and
punctuation removal. Tokens whose occurrence

‡https://spacy.io/

less than 5 are treated as unknown words in our vo-
cabulary. The reference vocabulary size is 10,201,
whereas the most frequent 1,000 words from ref-
erence sentences are used as the visual-concept
vocabulary. We set the maximum length of sen-
tences as 20, in which all input sequences are right
padded with 0s or cut on the right hand side. For
hyperparameter tuning, we test the decoder layer
number Ndec ∈ {3, 6} and found that model with 6
layers slows down the training speed but achieves
the similar performance.

RL training takes the majority of time costs
due to the reward computation. Specifically, it
took around 4/2/1.5 hours to train one epoch for
RL/MLE/tag training in our experiments.

A.3 Ablation Study Curves
To investigate the necessity of explicit training on
visual tags, we add additional pretraining stage on
the visual concept detection as a multi-label classifi-
cation task. Fig.5 compares the performance of pro-
posed model with pretraining for 10 epochs using a
binary cross-entropy loss (referred as +tag pretrain-
ing), and the counterpart without the pretraining,
i.e., RefineCap, on the validation set. As shown
in Fig.5, RefineCap conducts supervised training
using cross-entropy loss as the weight initialization
over the period of the beginning 25 epochs, fol-
lowed by reinforcement learning process. Model
with tag pretraining has three different stages: tag
pretraining from epoch 0-10, supervised training
from epoch 10-35, and finally reinforcement learn-
ing after 35-th epoch.

It can be seen that the overall trend of CIDEr-
D scores, BLEU-1, BLEU-4 curves for models
with tag pretraining witnesses the degeneration of
performance, with no obvious change but a slight
decrease, and the extra time and computing costs
in the first 10 epochs. Besides, over the period
of reinforcement learning, the rewards and reward
baseline values of +tag pretraining models have
decreased with 0.05 shift due to the different start-
ing points but maintain a similar increase slope as
RefineCap. Thus we extrapolate that explicit visual-
concept pretraining could impede the weight ini-
tialization for the following training process in our
model. We also observed a clear performance gain
with REINFORCE algorithm in the final stage.

https://spacy.io/


Reference: 
  A fluffy white chair that faces away from a television.
  A pillow covered reading chair in the corner of the living room.
  The living room is empty with the television on. 
  White ornate seat in nicely decorated room with television.
  A white chair, books and shelves and a tv on in this room.

Visual concept:
blue(1), white(1),room(1), brown(1), old(0.997), 
television(0.980), living(0.970)

Baseline: a bedroom with a white bed and a tv.

Ours: a living room with a white bed and a television.

Reference:  
  A flock of small birds flying in the sky over the water.
  Several birds that are flying together over a body of water.
  A flock of birds flying over a field.
  A black and white image showing birds flying over a body of water.
  A group of birds flying over the water.

Visual concept:
black(1), white(1), bird(1), looking(1), picture(1), 
air(0.998), water(0.995), flying(0.979)

Baseline: a flock of birds flying over a beach.

Ours: a flock of birds flying over a body of water.

Reference: 
  A cow standing near a curb in front of a store. 
  There is a cow on the sidewalk standing in front of a door. 
  A cow on the sidewalk on a corner in front of a store.
  Cow standing on sidewalk in city area near shops.
  A cow on a city sidewalk in front of a business.

Visual concept:
  white(1), blue(1), red(1), grass(0.991),   
  green(0.990), bird(0.972), small(0.964), 
  water(0.950), wooden(0.843), field(0.733)

Baseline: a boat with an american flag on the 
back of it.
Ours: a boat with flags on a boat in the water.  

Reference:  
  A swan is floating down the river by the boat.
  A boat with flags and tents is docked next to a grassy bank.
  A boat that is decorated with flags on the water. 
  A parked boat with some items inside of it.
  A large red boat sitting next to a lush green shore.

Visual concept:
  blue(1), white(1), picture(1), looking(1),       
  standing(1), red(1), black(0.999), 
  street(0.998), walking(0.917), 
  brown(0.824)
Baseline: a cow standing on the side of a city 
  street 
Ours: a cow walking down a sidewalk in front 
  of a store .

(a)
Visual concept:
  young(1), little(1), sitting(1), brown(1),       
  small(1), black(1), green(0.998), red(0.991),   
  playing(1), room(0.942), looking(0.902),   
  luggage(0.881)
Baseline: a baby sitting on a chair with a laptop.
Ours: a baby sitting in a suitcase on the floor. 

Reference: 
  Young boy sitting on top of a briefcase
  A young baby sits on top of a briefcase.
  A little boy sitting on a suitcase on the floor.
  A small child sitting on top of a brief case. 
  A toddler boy is sitting on a brief case.

Visual concept:
  looking(1), red(1), large(1), airplane(1), 
  car(0.981), old(0.972), field(0.970)

Baseline: airplanes parked at an airport with a 
large window.
Ours: airplanes are parked at an airport on the 
tarmac.

Reference:  
  An airport filled with planes sitting on tarmacs.
  The view of runway from behind the windows of airport.
  A truck driving towards some planes parked on the  runway
  Planes on a wet tarmac unloading at arrival gates.
  Window view from the inside of airplanes, baggage carrier and tarmac.

Reference: 
  A brown and white dog wearing a neck tie.
  A brown and white dog wearing a tie on carpet.
  A dog wearing a tie poses for the camera. 
  A dog is sitting with a neck tie on.
  A close up of a dog wearing a tie.

Visual concept:
  large(1), blue(1), black(1), white(1), looking(1),
  brown(1), old(1), dog(0.999), wearing(0.998), 
  sitting(0.983),room(0.966), big(0.944)

Baseline: a dog wearing a tie sitting on a table.
Ours: a dog wearing a tie sitting on the floor. 

Reference:  
  An Italian dish is presented on a white plate.
  Baked pizza with red tomatoes and green olives.
  A plate of food cut into slices has onions and olives on it.
  A pizza sliced in four slices on a plate.
  Onions, tomatoes and olives atop a plate on a table.

Visual concept:
  white(1), large(1), red(1), small(1), plate(1),
  pizza(1), little(1), green(1), picture(1), 
  open(0.982), big(0.893),
  
Baseline: a pizza on a white plate on a table. 
Ours: a pizza with tomatoes and cheese on a white 
plate. 

(b)

Figure 3: Supplemental examples of the generated captions.



Visual concept:
  large(1), white(1), looking(1),green(0.998), 
  old(0.997), woman(0.996), standing(0.992),  
  blue(0.978), brown(0.960), young(0.851), 
  grass(0.791), people(0.735), group(0.585)
Baseline: a crowd of people looking at an airplane 
on a runway.
Ours: a group of people standing around a large 
plane on a runway.

Visual concept:
  large(1), blue(1), white(1), looking(1),       
  kite(0.998), flying(0.997), person(0.993), 
  water (0.937)

Baseline: two kites flying in the sky on a beach.

Ours: two kites flying in the sky over the ocean.
Reference: 
  A kite flying through a  blue sky with a long tail.
  A colorful kite is flying over the ocean.
  A kite flying through the sky on a clear day.
  A very pretty kite is flying high in the sky.
  There are different kites flying in the sky.

Reference:  
  A group of people observing two planes at an air show.
  A family walks on a runway near huge planes.
  People walking towards aircrafts on display outside during the day.
  People walking around two different Air Force airplanes.
  Large, air force airplanes sit on a runway while tourists look at them.

Reference: 
  A woman standing over a pan filled with food in a kitchen.
  A woman smiling while she prepares a plate of food. 
  A smiling woman standing next to a plate of food she made 
  A woman in a bright pink summer shirt smiles and displays a party 
platter she has made.

Visual concept:
  woman(1), black(1), person(1), picture(1), table(1),
  red(0.999), yellow(0.996), holding(0.988), 
  hand(0.978),  green(0.967), food(0.960), 
  wearing(0.531), kitchen(0.516)

Baseline: a woman standing at a table with a tray of 
food.
Ours: woman holding a tray of food in a kitchen. Reference:  

  two people on motorcycles car and trees and water.
  Motorcyclists waiting in traffic on a rainy day.
  Two individuals sit on motorcycles on a busy street in the rain.
  Two motorcyclists next to one another on damp street. 
  Two people in helmets sitting on a motorcycle behind a car.

Visual concept:
  black(1), red(1), person(1), picture(1), white(1),
  man(1), street(1), people(0.998), 
  motorcycle(0.995), wearing(0.994), parked(0.954),
  city(0.792), light(0.782), games(0.664), bus(0.627)
Baseline: two people riding on a motorcycle on a city 
  street.
Ours: two people riding on a motorcycle in the rain. 

(a)

Reference: 
  A bunch of people sit in an open court yard.
  A small group of people standing around a ball patio.
  A group of people walking around a parking lot.
  A group of people in front of a white building.
  Many people on a courtyard under a clock.

Visual concept:
  looking(1), red(1), large(1), airplane(1), 
  car(0.981), old(0.972), field(0.970)

Baseline: a woman riding a skateboard on a 
sidewalk.
Ours: a woman riding a skateboard in front of a 
store. Reference:  

  A girl is skateboarding down the Hollywood walk of fame.
  A woman who is skateboarding down the street.
  A woman with glasses and a scarf skateboards along Hollywood's Walk of 
Fame.
  Lady in front of a store standing on a pink skateboard
  A woman is riding her skate board down the sidewalk.

Reference: 
  A stop sign and street sign encased in snow and ice.
  A couple of street signs sticking out the side of a ski slope.
  A stop sign and street sign encased in a wall of snow.
  A stop sign is buried in a large pile of snow.
  A large pile of snow with a stop sign and a street sign poking out.

Visual concept:
  red(1), white(1), big(1), snow(0.998), street(0.997),
  street(0.997), stop(0.980), large(0.965), 
  sign(0.951),  snowy(0.893), skis(0.903), 
  ski(0.882), field(0.767)

Baseline: a stop sign is covered in snow in a
Ours: a stop sign and a street sign in the snow . 

Reference:  
  Two giraffes stand and eat food out of a basket.
  Two giraffes looking for food in an empty feeding basket
  A couple of giraffes reach for a basket 
  Two giraffes that are eating from a basket.
  Two giraffes eating from a basket on a pole.

Visual concept:
  yellow(1), young(1), food(1), brown(1), white(1),
  giraffe(1), standing(1), looking(1), 
  large(0.997), walking(0.867), couple(0.856)

Baseline: two giraffes standing next to each other in a zoo.
Ours: two giraffes are eating from a basket in a zoo.  

Visual concept:
  white(1), blue(1), large(0.998), standing(0.997),       
  people(0.988), man(0.976), building(0.962), 
  outside(0.882), woman(0.832), group(0.822)
Baseline: a group of people standing in front of a 
  building.
Ours: a group of people standing outside of a 
  building with a clock.  

(b)

Figure 4: Supplemental examples of the generated captions.
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Figure 5: The performance curves of RefineCap w/ and w/o tag pretraining (in blue / green separately) on evaluation
set, including CIDEr-D/BLEU-1/BLEU-4 metrics, validation loss, rewards and baseline reward values.


