
Curriculum Learning for Vision-Grounded Instruction Following

Guan-Lin Chao1, Ian Lane2
Carnegie Mellon University

Electrical and Computer Engineering1,2, Language Technologies Institute2

{guanlinchao, lane}@cmu.edu

Abstract

Curriculum Learning is a training strategy
where the the training examples are presented
to the model in a specific order such that
the model learns to perform the target task
more efficiently. In this paper, we focus
on the vision-grounded instruction following
and explore both manual and automatic Re-
inforcement Learning curricula. To design
a manual curriculum, we define three types
of hyperparameters: subtask trajectory, pac-
ing and ordering and experiment different hy-
perparameter selection strategies. We also
explore Teacher-Student Curriculum Learn-
ing where the Teacher is trained to automati-
cally generate a sequence of subtasks as the
Student agent’s training curriculum. Exper-
iments show that training with the manual
curricula with proper hyperparameter selec-
tion and Teacher-Student Curriculum Learn-
ing both lead to performance gain on the target
task compared with training on the target task
directly from beginning.

1 Introduction

Curriculum Learning (Bengio et al., 2009; Pentina
et al., 2015; Sukhbaatar et al., 2018; Wu and Tian,
2017) is a training strategy where the machine
learning models learn from the training examples
presented in a specific order (curriculum). Ide-
ally, a well-design learning curriculum can help
the model acquire the skills which constitutes the
final target task more efficiently than learning from
random training example order.

In this paper, we consider vision-grounded in-
struction following to be our target task (Misra
et al., 2018; Chevalier-Boisvert et al., 2019; Shrid-
har et al., 2020). In our setting, the agent receives
a mission (switch an appliance or fetch an object)
in text form and learns to navigate and manipu-
late objects to complete the mission in a simulated
indoor multi-room environment, as shown in Fig-
ure 1. Vision-grounded instruction following in-

Example Mission 1: you must fetch the purple cup
Example Mission 2: go turn on the tv in the living room

Figure 1: Example illustration of the instruction-
following task. The goal of the agent (represented by
the red arrow) is to complete the given mission by nav-
igating the environment.

volves understanding both the language and visual
context (mission description, the objects and the
environment surrounding the agent) and decision
making (a policy that outputs a series of actions
for the agent to carry out in order to complete the
mission).

We explore both manual and automatic Rein-
forcement Learning curricula for the instruction-
following task. Our contribution are as follows.
Unlike studies on Vision-and-Language Naviga-
tion (Anderson et al., 2018; Das et al., 2018; Fried
et al., 2018) which focus on understanding the com-
plex and photo-realistic visual scenes from col-
lections of real buildings scanned data, we train
our instruction-following agent using a simulator
which maximizes the randomness of the environ-
ment layout, object positions and appearances to
enable Domain Randomization (Tobin et al., 2017).
Despite simplifying the visual understanding as-
pect, our goal is to train an instruction-following
agent that is able to generalize to act in diversi-
fied unseen environments (Section 2). We create
a series of subtasks which are simplified from the
target task along two complexity dimensions: mis-
sion and spatial layout. We train the agent with



Room type Furniture and Appliances
living room sofa, table, TV, light, trash bin
kitchen refrigerator, coffeemaker, dishwasher, ta-

ble, light, trash bin
bedroom bed, table, wardrobe, TV, light, trash bin
bathroom washer, toilet, light, trash bin
Object types pen, book, cup, bowl, shirt
Object colors red, green, blue, yellow, purple

Table 1: Furniture, appliances and object defined in our
environment.

both manual and automatic curricula. In the man-
ual curricula, the subtasks’ trajectory, ordering and
pacing are carefully designed with human heuristic.
We utilize Teacher-Student Curriculum Learning
to automatically generate learning curricula (Sec-
tion 3). Experiments on the MiniGrid environment
which specializes on domain randomization verify
the efficacy of the proposed manual and automatic
curriculum learning strategies (Section 4).

2 Training Framework

2.1 RL Environment

Our training environment is based on the
Minimalistic Gridworld Environment (MiniGrid)
(Chevalier-Boisvert et al., 2018) package’s Mul-
tiroom task with several modifications. In each
episode, the room number is randomly chosen from
2 to 4, rooms’ widths and heights randomly cho-
sen from 6 to 9 grid cells, and the room layout
and door locations are also randomly generated.
The rooms are randomly assigned to have differ-
ent functions and the furniture and appliances are
chosen and placed randomly. Household objects
randomly chosen from 5 types and 5 colors are also
placed at randomly locations. The number of ob-
jects is defined to be the number of rooms plus one.
The details of furniture and appliances for different
room types and the types and colors of objects are
described in Table 1. The agent’s starting position
and orientation are also determined randomly for
each episode.

The agent has 5 possible actions: turn_left,
turn_right, move_forward, toggle, pickup. We de-
fine two types of missions: (1) fetch the specified
object, e.g. "get the orange cup in the kitchen", and
(2) switch the specified appliance (light or TV), e.g.
"please switch on the light in the bedroom". For
the fetch mission, task success is when agent picks
up the specified object. For the switch mission, task
success is when agent toggles the specified appli-
ance on. Picking up the wrong object or toggling

on the wrong appliance are counted as failure. If
the agent takes more than max_step of steps before
completing the task successfully, it is also counted
as failure. Because in our environment the objects
have more variety and makes the fetch mission
more challenging, we define that each episode to
have 75% probability with the fetch mission and
25% with the switch mission. The mission texts are
generated using ten templates of natural language
expressions to mimic real human’s commands. In
every step, the agent’s observation includes the
agent’s partially observable view image (defined to
be 7×7 grid cell area), and the mission text string
which is given at the beginning of the episode.

We choose to extend the MiniGrid training
framework for its strength in Domain Randomiza-
tion (Peng et al., 2018). MiniGrid provide high
flexibility to create complex room layouts and its
object, furniture and appliance positions are com-
pletely random. By training the model that works
across the highly diversified simulated environ-
ments, we expect the agent to generalize better
to unseen room environments.

2.2 Agent Policy

Fully Fully

Conv 3

Conv 2

Conv 1

Embedding

GRU

Concat

agent’s view image

“please get the yellow 
pen in the bedroom”

mission

V(s)𝜋(∙ | s)
actor critic

Figure 2: Agent’s model architecture.

The agent’s model architecture is shown in Fig-
ure 2. The network is trained using the Advantage
Actor-Critic (A2C) (Wu et al., 2017) algorithm.
The mission text string is encoded by a GRU cell,
and the agent’s view image is encoded by three
convolutional layers. The textual and visual rep-
resentations are concatenated and projected by a
fully-connected layer respectively to output the ac-
tor’s and the critic’s prediction. The critic network
learns to estimate the value function V , which is
then used to calculate the advantage function:

A(st, at) = Q(st, at)− V (st)

= rt+1 + γV (st+1)− V (st)



The actor network parameterizes the policy, and is
updated in the direction suggested by the critic net-
work, similar to other policy gradient algorithms:

∇θJ(θ) ∼
T−1∑
t=0

∇θ log πθ(at|st)(rt+1 + γV (st+1)− V (st))

=

T−1∑
t=0

∇θ log πθ(at|st)A(st, at)

3 Curriculum Learning

3.1 Manual Curriculum
The principle of curriculum learning is starting with
simpler training samples and gradually increasing
the complexity of training data, with the hope that
training on such a curriculum will help the perfor-
mance on the target task (Hacohen and Weinshall,
2019; Weng, 2020). Our target task includes the
missions of switch appliances (light and TV) and
fetch objects (5 types in 5 colors) in a 2-to-4-room
environment. We created the subtasks which will
compose the curriculum by simplifying the target
task along two complexity dimensions: mission
variety and spacial layout, as shown in Figure 3.
The two complexity dimensions are chosen based
on human heuristic.

traj C

traj B

traj A

Mission

Spatial 
Layout

2 room

2-to-4 room

target 
environment

2-to-3 room

switch appliances ✓ ✓ ✓ ✓ ✓

fetch objects
(# types, #colors) - (2, 2) (3, 3) (4, 4) (5, 5)

Figure 3: The target task can be simplied to easier sub-
tasks along two complexity dimensions: mission vari-
ety and spatial layout. The subtasks are the grid points.

To design a learning curriculum, we consider
the following hyperparameters: subtask trajectory,
curriculum pacing and subtask ordering.

Subtask Trajectory Because the subtask com-
plexity is two-dimensional, there exists multiple
subtask trajectories from the simplest task to the
target task in monotonically increasingly complex-
ity, e.g. trajectory A, B, and C as shown in Figure 3.

Curriculum Pacing The pace of the curriculum
determines the number of training steps to learn
each subtask in the curriculum. We compare differ-
ent training steps in a fixed pacing function, where
all subtasks are trained with the same number of
steps.

Subtask Ordering Does the ordering of sub-
tasks in the learning curriculum affect the learn-
ing effectiveness? Besides the regular increasing
complexity curriculum, we also consider an "anti"
curriculum where the subtasks appear in decreas-
ing complexity, and a "random" curriculum with
random subtask order.

3.2 Automatic Curriculum

While it is possible to manually design a reasonable
learning curriculum by carefully choosing the sub-
task trajectories, ordering and pacing, we also ex-
plore automatically learning the curriculum. Mati-
isen et al. (2019) proposed the Teacher-Student Cur-
riculum Learning, where the agent model (Student)
is trained according to the curriculum generated
by the Teacher model. The Teacher model uses
the Student’s past episodes’ returns as input, and at
each timestep it predicts a subtask for the Student
to practice for a few episodes and the episode re-
turns are fed as input back to the Teacher model.
The goal of the Teacher is to maximize the sum of
performance for all the subtasks.

Learning the Teacher model can be formulated as
a non-stationary multi-armed bandit problem. Let’s
denote the subtasks as {u1, · · · , uK}. The horizon
is denoted as T . In each timestep t, the Teacher
picks a subtask ut = uk, k ∈ [K]. The Student
trains on uk and returns the episode return xt. The
teacher’s goal is to maximize

∑
t=1T xt. We adopt

the following algorithms to train the Teacher model
proposed by (Sutton and Barto, 2018).

Online Algorithm In Online Algorithm, we de-
fine the Teacher’s reward rt as the change in stu-
dent’s episode return rt = xt − xt′ , where t′ is the
previous timestep when uk was trained on. And
we approximate the expected reward Q for differ-
ent subtasks using exponentially weighted mov-
ing average as Qt+1(ut) = αrt + (1 − α)Qt(ut)
,where α is learning rate. The next subtask ut+1 is
drawn from the Boltzmann distribution p(u) =

eQt+1(u)/τ∑K
k=1 e

Qt+1(uk)/τ
,where τ is the temperature of

Boltzmann distribution.

Window Algorithm The Window Algorithm
shares the same definition and update rule of the ex-
pected reward Q and subtask selection policy. The
only difference is that the reward rt is instead de-
fined as the slope of the subtask uk’s lastN episode
returns {xt, xt′ , · · · , xt(N)}, calculated using linear
regression.



Sampling Algorithm In Sample Algorithm, the
Teacher’s reward has the same definition as On-
line Algorithm. Inspired by Thompson Sam-
pling (Chapelle and Li, 2011), we store the last
N episode returns {xt, xt′ , · · · , xt(N)} in a buffer
for each subtask uk. Subtask selection is done by
sampling a recent reward from each of the sub-
tasks’ buffer, and the subtask whose buffer yields
the highest sampled reward is chosen as ut+1.

4 Experimental Results

0 1 2 3 4 5
Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Baseline
Trajectory B
Trajectory A
Trajectory C

Figure 4: Learning curves comparing subtask trajecto-
ries. Training on the target task begins at the vertical
line.

0 1 2 3 4
Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Curriculum-600K
Curriculum-500K
Curriculum-400K
Curriculum-300K
Baseline

Figure 5: Learning curves comparing curriculum pac-
ing step sizes. Each subtask is represented by one color,
with the same color scheme as Figure 3. Training on
the target task is represented using black color.

0 1 2 3 4 5
Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Baseline
Regular Curriculum (Trajectory B)
Random Curriculum
Anti Curriculum

Figure 6: Learning curves comparing subtask ordering.
Training on the target task begins at the vertical line.

The learning curves of manual curriculum learn-
ing are shown in Figure 4 through 6. For sub-
task trajectory, we compare three trajectories (A:

0 1 2 3 4 5
Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Baseline
Manual Curriculum (Trajectory B)
TS Online Algorithm
TS Sampling Algorithm
TS Window Algorithm

Figure 7: Learning curves comparing Teacher-Student
Curriculum Learning algorithms. After the vertical
line, the agent begins training on the target task.

mission-first, C: spatial-first, and B: alternating-
axes) with increasing complexity, as shown in the
Figure 3. It’s shown that training with the cur-
riculum following the trajectories A, B and C all
outperform the baseline (only training on the target
task from the beginning), and trajectory B has the
best performance. In the following experiments, we
use Trajectory B as the default manual curriculum.
In Figure 5, we compare training each subtask for
300K, 400K, 500K or 600K steps respectively in a
fixed pacing schedule. We observe that a moderate
pacing which balances between under training and
over training on subtasks shows the best perfor-
mance and outperforms the baseline. In Figure 6,
we observe that the "anti" curriculum provides a
small performance gain compared with the base-
line. It is noteworthy that a "random" curriculum’
performance is comparable as the regular curricu-
lum.

To find the best hyperparameters to manually
design a learning curriculum requires expert knowl-
edge or a great amount of search efforts. In Fig-
ure 7, we evaluate learning the curriculum automat-
ically with different Teacher-Student Curriculum
Learning algorithms. It’s shown that when spend-
ing the same number of training steps, automatic
curricula achieve matching performance compared
with the carefully-designed manual curriculum and
outperform the baseline.

5 Conclusion

We propose to train a vision-grounded instruction
following agent with manually-designed curric-
ula and the automatic Teacher-Student Curriculum
Learning. Experimental results provide insights of
how to select hyperparameters of manual curricula
and the efficacy of the learning a strong curriculum
automatically.



References
Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,

Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Computer Vision and Pattern Recognition
(CVPR).

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning.
In International Conference on Machine Learning
(ICML).

Olivier Chapelle and Lihong Li. 2011. An empirical
evaluation of thompson sampling. In Advances in
Neural Information Processing Systems (NeurIPS).

Maxime Chevalier-Boisvert, Dzmitry Bahdanau,
Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. 2019.
Babyai: A platform to study the sample efficiency
of grounded language learning. In International
Conference on Learning Representations (ICLR).

Maxime Chevalier-Boisvert, Lucas Willems, and
Suman Pal. 2018. Minimalistic gridworld environ-
ment for openai gym. https://github.com/
maximecb/gym-minigrid.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Ste-
fan Lee, Devi Parikh, and Dhruv Batra. 2018. Em-
bodied question answering. In Computer Vision and
Pattern Recognition (CVPR).

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower models
for vision-and-language navigation. In Advances in
Neural Information Processing Systems (NeurIPS).

Guy Hacohen and Daphna Weinshall. 2019. On the
power of curriculum learning in training deep net-
works. In International Conference on Machine
Learning (ICML).

Tambet Matiisen, Avital Oliver, Taco Cohen, and John
Schulman. 2019. Teacher-student curriculum learn-
ing. IEEE Transactions on Neural Networks and
Learning Systems.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.
Mapping instructions to actions in 3d environments
with visual goal prediction. In Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. 2018. Sim-to-real
transfer of robotic control with dynamics randomiza-
tion. In International Conference on Robotics and
Automation (ICRA).

Anastasia Pentina, Viktoriia Sharmanska, and
Christoph H Lampert. 2015. Curriculum learning
of multiple tasks. In Computer Vision and Pattern
Recognition (CVPR).

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED:
A Benchmark for Interpreting Grounded Instruc-
tions for Everyday Tasks. In Computer Vision and
Pattern Recognition (CVPR).

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov,
Gabriel Synnaeve, Arthur Szlam, and Rob Fergus.
2018. Intrinsic motivation and automatic curricula
via asymmetric self-play. In International Confer-
ence on Learning Representations (ICLR).

Richard S Sutton and Andrew G Barto. 2018. Rein-
forcement learning: An introduction. MIT press.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. 2017. Do-
main randomization for transferring deep neural net-
works from simulation to the real world. In Interna-
tional Conference on Intelligent Robots and Systems
(IROS).

Lilian Weng. 2020. Curriculum for reinforcement
learning. lilianweng.github.io/lil-log.

Yuhuai Wu, Elman Mansimov, Roger B Grosse,
Shun Liao, and Jimmy Ba. 2017. Scalable trust-
region method for deep reinforcement learning using
kronecker-factored approximation. In Advances in
Neural Information Processing Systems (NeurIPS).

Yuxin Wu and Yuandong Tian. 2017. Training agent
for first-person shooter game with actor-critic cur-
riculum learning. In International Conference on
Learning Representations (ICLR).

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://lilianweng.github.io/lil-log/2020/01/29/curriculum-for-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2020/01/29/curriculum-for-reinforcement-learning.html

