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Abstract
Video-guided machine translation (VMT) is
a new multimodal machine translation task
aimed at using videos to guide translation. Vi-
sual information gleaned from videos is ex-
pected to provide context in the translation
progress. Results from the Video-guided Ma-
chine Translation Challenge 2020 suggest that
multimodal models only have marginal per-
formance improvements over their text-only
counterparts. We hypothesize that this is
caused by the simple and short video descrip-
tions in VATEX, the dataset used in the chal-
lenge. In this study, we examine our hypoth-
esis by conducting input-degradation, visual
sensitivity experiments, and human evaluation
of VATEX. The results indicate that textual de-
scriptions of videos in VATEX are sufficient
for translation, which prevents the visual con-
text from videos to guide the translation.

1 Introduction

Extending text-only machine translation, the mul-
timodal machine translation task exploits informa-
tion from other modalities to improve the trans-
lation quality. Video-guided machine translation
(VMT) is a new multimodal machine translation
task that provides videos, as additional inputs, for
a model to translate sentences from the source to
target languages. Compared to image-guided ma-
chine translation, videos provide visual and acous-
tic modalities with rich embedded information,
such as actions, objects, and temporal transitions.

VMT refers to videos as additional information
to improve the translation quality. Therefore, an
ideal dataset for this task should provide videos
as complements rather than redundancies. The re-
cently proposed VATEX dataset is a dataset for
VMT research and the shared task (VMT Chal-
lenge). From the results of the 2020 VMT chal-
lenges, all multimodal models only had marginal
performance gains compared to their text-only
counterparts. We hypothesize that this was caused

by the design of the VATEX dataset: simple and
short video descriptions are sufficient for transla-
tions, making videos redundant information for
the models. To examine our hypothesis, similar
to (Caglayan et al., 2019), we conducted input
degradation experiments, visual sensitivity experi-
ments, and human evaluations. The experimental
and human evaluation results showed that when
textual information is sufficient, visual information
from videos becomes redundant to a multimodal
model. The code used in this study is publicly
available.1

2 Related Work

VMT Challenge 2020 The top three teams in
the VMT Challenge 2020 presented recurrent neu-
ral network (RNN) and Transformer-based mod-
els. The winning team, Hirasawa et al. (2020),
used a doubly attentive RNN-based model (Cal-
ixto et al., 2017) with positional encoding for video
features. Two other teams proposed Transformer-
based VMT models with modifications to incorpo-
rate video features.

Probing Auxiliary Modalities Probing the need
for auxiliary modalities is an important topic in
multimodal machine translation (MMT). In image-
guided machine translation, Caglayan et al. (2019)
conducted analytic experiments whereby source
sentences were degraded in three different ways
to simulate specific conditions in which images
should be beneficial. Hessel and Lee (2020) pro-
posed a method to isolate cross-modal interactions
for multimodal classification tasks and showed that
cross-modal interactions have no or little contribu-
tion to the model performance. In this study, we
extend Caglayan et al. (2019) to probe the need for
videos as a visual modality in VMT.

1https://github.com/ZhishenYang/eval_
on_vatex_dataset

https://github.com/ZhishenYang/eval_on_vatex_dataset
https://github.com/ZhishenYang/eval_on_vatex_dataset


3 Input Degradation

Inspired by Caglayan et al. (2019), we conducted
four source-side input-degradation experiments:
color, noun, verb, and progressive masking. Since
these input-degradation experiments are used to
simulate the scarce textual context condition, we
hypothesize that a multimodal model can rely on
the visual context obtained from videos and will
perform better than a monomodal model that only
relies on the textual context.

Color Deprivation We replaced English words
that represent color in the source sentences with
a special token [c]. The masked tokens consist of
0.4% in both training set and validation set.

Noun Masking We replaced each noun in the
source English sentences with a special token, [n].
This masked 28.2% of the tokens in both the train-
ing and validation sets.

Verb Masking The authors of the VATEX
dataset used videos from the Kinetics-600 dataset,
which contains a broad range of actions. All verbs
in the source sentence were replaced with a special
token, [v]. This replaced 14.0% of the tokens in
both the training and validation sets.

Progressive Masking Progressive masking aims
to progressively replace the last N words in a
source sentence with a special token, [p]. Un-
like other masking experiments, progressive mask-
ing simulates a progressive low-resource sce-
nario (Caglayan et al., 2019). We hypothesize that
with the increasing number of masked tokens in
the source sentences, multimodal models with ac-
cess to visual information will perform better than
text-only models.

We selected N = {2, 4, 6, 10, 20, 30} in the pro-
gressive masking experiment. When N = 30,
nearly 100% of all words were masked, and the
multimodal model performed video captioning
with "expected length" as the only known infor-
mation.

4 Visual Sensitivity

Visual Incongruence Test Inspired by (Elliott,
2018) and (Caglayan et al., 2019), we implemented
visual incongruence tests to examine the visual sen-
sitivity of multimodal models. In this test, we fed
multimodal models with incongruent visual fea-
tures during the testing time. The hypothesis is that

the performance of multimodal models will deteri-
orate when fed with visual features from irrelevant
videos.

Visual Features To test whether multimodal
models are sensitive to different visual features, we
extracted visual features using pre-trained models
for action or object classification. We conjecture
that visual features correlated to subjects/objects
and actions in videos will help predict nouns and
verbs in video descriptions.

5 Experiments

5.1 Dataset
We used VATEX v1.1 (the latest version) 2. The
translation direction was the same as that of the
VMT challenge 2020: from English to Chinese.
Because the public test set is on-hold, we used a
validation set to test the performance of the mod-
els. The statistics of the dataset are provided in
Appendix A.

For the tokenization, we used spaCy 3 to tok-
enize the English sentences, and then employed
byte pair encoding (Sennrich et al., 2016) to split
the English tokens into subwords, where the num-
ber of merge operations was 8000. The Chinese
translations were tokenized at the character level.

5.2 Visual Feature Extraction
As described in Section 4, two types of features
were correlated to the nouns and verbs that we used
in the experiments: ResNet-152 and I3D features.
We extracted the ResNet-152 features from the per-
second frames of each video. The ResNet-152 fea-
ture is the averaged convolutional features from the
last convolutional layer of ResNet-152 (He et al.,
2016) pretrained on ImageNet (Deng et al., 2009).
The I3D features were extracted from videos using
two-stream inflated 3D ConvNet (I3D) (Carreira
and Zisserman, 2017) and the I3D features pro-
vided in the VMT challenge 2020 2.

5.3 Models
For the text-only baseline models, we used an at-
tentive RNN model (Bahdanau et al., 2015) and
transformer model (Vaswani et al., 2017).

For the multimodal models, we employed two
models from the VMT challenge 2020: hierarchi-
cal attentive RNN model with positional encod-

2https://eric-xw.github.io/vatex-website/download.html
3https://spacy.io/



Figure 1: Corpus-level BLEU scores of the validation set. The data labels show the BLEU scores of the text-only
baselines.

ing (Hirasawa et al., 2020) and VGT-Shallow4. See
Appendix D for more details.

6 Results

In this section, we discuss the results from the input-
degradation and visual sensitivity experiments in
Figure 1 and 2 5. Without any input degra-
dation, all transformer-based models had higher
BLEU scores than those of the RNN-based mod-
els. Among the multimodal models, VGT-Shallow
(I3D) achieved the best BLEU scores.

Color Deprivation Since only a small fraction
of tokens was masked, compared with models
trained on complete data, the differences between
the multimodal and monomodal models were
marginal. The text-only Transformer and atten-
tive RNN model had slightly higher BLEU scores
than those of the multimodal models.

Noun Masking All models had lower BLEU
scores compared to those of their complete data
baselines. All multimodal models, except for the
VGT-shallow (I3D), had higher BLEU scores com-
pared to those of the text-only models. Noun-
masking has a larger masking scale; therefore, com-
pared to the verb masking and color deprivation
experiments, the multimodal models can exploit
the visual context to infer missing information.

Verb Masking In verb masking, although all
models had deteriorated performances, the differ-
ences between the multimodal and monomodal
models were minimal.

4https://www.youtube.com/watch?v=
zHwXPmIQajA&t=517s

5See Appendix B for more details.

Visual Sensitivity Test Even when feeding with
incongruent visual features during testing, the mul-
timodal models suffered slight performance deteri-
oration as compared with training and testing on a
complete dataset. This indicates that visual features
have a minimal influence on multimodal models
when given complete text.

In our experiments, the multimodal models with
different architectures had different sensitivities to
visual features. The hierarchical attentive RNN
using ResNet-152 had higher BLEU scores than
those obtained when using I3D features. However,
for VGT-Shallow, this only occurred for the noun
masking experiment.

Progressive Masking Figure 2 shows the result
of progressive masking. For an increasing number
of masked tokens, the multimodal models started to
take advantage of visual modalities, and therefore
outperformed the text-only models. Moreover, the
Hierarchical Attentive RNN had the best BLEU
score when nearly 100% of tokens were masked.

7 Human Evaluation

The authors of VATEX used a post-editing anno-
tation strategy to collect parallel English-Chinese
translation pairs, in which automatic translation
systems were employed. Based on the results of
the input-degradation experiments, we hypothesize
that if English-Chinese translations are sufficient,
videos become redundant in post-editing. To test
our hypothesis, we conducted a human evaluation
task based on a post-editing annotation strategy.

We randomly selected 500 videos from VATEX’s
validation set to construct the human evaluation set,

https://www.youtube.com/watch?v=zHwXPmIQajA&t=517s
https://www.youtube.com/watch?v=zHwXPmIQajA&t=517s


EN: A person is showing three little kids making faces and being historically.
VX: 一个人正在展示三个小孩做鬼脸和历史。

(A person is showing three kids making funny faces and history.)
ZH: 一个人正在展示历史上的三个做鬼脸的孩子。

(A person is showing three grimacing children in history.)
PE: 三个孩子在电脑前，一个男孩的椅子翻了。

(Three children were in front of the computer, and one boy’s chair
turned over.)

Table 1: Example of human evaluation. “VX” shows the translation from the VATEX dataset; “ZH” is the human
translation; and “PE” is the post-edited Chinese translation. The parenthesized sentences are obtained using Google
Translation on Chinese sentences.

Figure 2: Progressive masking: the multimodal mod-
els outperform the monomodal models with increasing
percentages of masked tokens.

and selected two English video descriptions from
each video’s parallel translation pairs in random
order. Therefore, a total of 1000 instances exist
in the human evaluation set; each instance has an
English video description and a video URL.

Given an instance from the human evaluation
set, a human translator is first asked to perform an
English-Chinese translation, then watch the video,
and post-edit the translation only if it does not prop-
erly describe the video. We also asked the translator
to provide reasons for the post-editing, as well as
any remarks. Four professional translators were
recruited, two for the translation and two for post-
editing, to guarantee the translation quality.

The average editing distance between original
Chinese translations from VATEX and human trans-
lations is 13.3, which indicates that the annotation
strategy of VATEX cannot generate as high-quality
translation as a human translator. The translator
post-edited 104 Chinese translations, 10.4% of the
total number of instances, with an average edit-
ing distance of 5.1, compared with human transla-
tions, and 14.5 compared with original translations
from the VATEX dataset. We found that 98% of
post-edits are categorized as “Source English de-

scription is inaccurate” which means the translators
actually used information gleaned from videos to
correct the wrong description in English source
sentences.

Based on the above results, we found that in most
cases, source English sentences provide sufficient
information for the human translator to perform
translations; videos help to correct incorrect de-
scriptions in the source sentences rather than to
disambiguate translations. These findings also indi-
cate that the short and simple sentences in the VA-
TEX dataset are sufficient for translation purposes,
and their videos only provide rather redundant in-
formation, which is consistent with the automatic
metrics evaluations.

Table 1 shows an example of post-editing correc-
tion. The edit distance between the Chinese video
description in VATEX and our human post-editing
is 15. In the source English descriptions, “being
historically” is an ambiguous and incorrect phrase,
and we also cannot align it with any parts in the
video. Therefore, the translator changed most parts
of the sentence to align with the video content.

8 Conclusion

In this study, we probe textual modality dominance
and the contributions of visual modality in VMT
tasks by analyzing a large-scale VMT dataset: VA-
TEX. Results from input-degradation and visual
sensitivity experiments indicate that multimodal
models tend to ignore the visual modality when
textual modality has sufficient information to per-
form translation. We ascribe the experimental re-
sults to the simple and short video descriptions in
VATEX, providing sufficient information to accom-
plish translation, eventually preventing the visual
context from videos to engage in the translation
process.
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A Dataset Statistics

Table 2 shows the statistics of dataset that we ob-
tained. Due to some of the YouTube URLs are
invalid, we exclude these data from

B Experiment Results

Table 3 shows the corpus-level BLEU scores of
each model in Figure 1.

C Hyper-parameters of baseline models

C.1 Attentive NMT
The attentive RNN model has a 2-layer bidirec-
tional GRU encoder with 512 hidden dimensions, a
2-layer GRU decoder with 512 hidden dimensions,
and an embedding layer of 1024 dimensions. Dur-
ing training, we used the Adam optimizer with a
learning rate of 0.0004, and batch size of 64 sen-
tences.

C.2 Transformer
The Transformer model in our experiment is the
same as the Transformer base model in Vaswani
et al. (2017). We employed the same training strat-
egy as Vaswani et al. (2017) to train our Trans-
former baseline.

D Video-guided NMT

Video-guided Transformer (VGT) models were pro-
posed at ALVR 2020. One of VGT models, VGT-
Shallow, achieved the best performance as a single
model system. Although the author provided a
strong baseline, the paper6 is not publicly avail-
able. However, the video about their models is
available7, and we implemented their model based
on the video.

The original work provides two variants of VGT
models: VGT-Shallow and VGT-Deep. The vanilla
Transformer encodes an n-tokens source sentence
x = (x1, · · · , xn), into the hidden state h =
(h1, · · · ,hn), before decoding the m-tokens target
sentence y = (yi, · · · , ym) from h. In the VGT
models, the model employs an auxiliary modal-
ity z = (z1, · · · , zk) of k-elements, which interact
with the language modality in their encoder. Note
that both VGT-Shallow and VGT-Deep have a stan-
dard Transformer decoder.

6“Depper Is Not Always Better: Strong Baselines for
Video-guided Neural Machine Translation”

7https://www.youtube.com/watch?v=
zHwXPmIQajA&t=517s

Split Language Video Sent. Token

Train
English

24K 121K
1,986K

Chinese 2,891K

Valid
English

2.8K 15K
228K

Chinese 331K

Table 2: The statistics of VATEX dataset that we used
in the experiments.

In the preliminary experiments, we found that
VGT-Shallow outperformed VGT-Deep, which was
also reported by the the original author. Therefore,
we only adopted VGT-Shallow in our experiments.

D.1 VGT-Shallow
The VGT-Shallow first encodes an input sentence
using a standard Transformer encoder to retrieve
the hidden state h. Subsequently, the model em-
ploys a single fusion layer that has one visual re-
construction module, one cross-modal multi-head
attention module, and one element-wise weighted
sum module. Note that we exploit normalization
and residual connection between modules. Specifi-
cally, the visual reconstruction module uses multi-
head attention to reconstruct the auxiliary features.

h
′
r = multiheadr(z,h,h) (1)

where multiheadr is a multi-head attention mod-
ule.

The obtained reconstructed feature h
′
r is then fed

into the cross-modal attention module:

h
′
x = multiheadx(h,h

′
r,h

′
r) (2)

where multiheadx is a multi-head attention mod-
ule.

Finally, the fusion layer computes the element-
wise sum over h using h

′
x as the weight to obtain

the final multimodal representation h
′
:

h
′
= h

′
x � h (3)

The model decodes the target sentence using h
′

instead of h.

https://www.youtube.com/watch?v=zHwXPmIQajA&t=517s
https://www.youtube.com/watch?v=zHwXPmIQajA&t=517s


Models T TIncongruence TColor TNoun TVerb

Attentive RNN 33.92 33.92 33.93 20.99 30.33
Hierarchical Attentive RNN (I3D) 33.49* 32.75* 33.34* 23.03* 30.21
Hierarchical Attentive RNN (ResNet-152) 33.68* 33.37* 33.71* 23.18* 30.26

Transformer 36.10 36.10 35.92 23.01 32.01
VGT-Shallow (I3D) 36.18 36.17 35.83 22.80* 31.84*

VGT-Shallow (ResNet-152) 35.93* 35.48* 35.59* 24.50* 31.67*

Table 3: Corpus-level BLEU scores on validation set. * indicates that a model is significantly different from its
text-only counterpart with P-value <= 0.05. bold marks the model with the best BLEU score.


