Mobile App Tasks with Iterative Feedback (MoTIF):
Addressing Task Feasibility in Interactive Visual Environments
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Abstract

In recent years, vision-language research has
shifted to study tasks which require more com-
plex reasoning, such as interactive question an-
swering, visual common sense reasoning, and
question-answer plausibility prediction. How-
ever, the datasets used for these problems fail
to capture the complexity of real inputs and
multimodal environments, such as ambiguous
natural language requests and diverse digital
domains. We introduce Mobile app Tasks with
Iterative Feedback (MoT1IF), a dataset with nat-
ural language commands for the greatest num-
ber of interactive environments to date.! Mo-
TIF is the first to contain natural language re-
quests for interactive environments that are not
satisfiable, and we obtain follow-up questions
on this subset to enable research on task uncer-
tainty resolution. We perform initial feasibility
classification experiments and only reach an
F1 score of 37.3, verifying the need for richer
vision-language representations and improved
architectures to reason about task feasibility.

1 Introduction

Vision-language tasks often require high level rea-
soning skills like counting, comparison, and com-
mon sense to relate visual and language data (Gor-
don et al., 2018; Zhang et al., 2019; Gardner et al.,
2020). Prior works’ abilities to learn and employ
this form of reasoning has been shown to be nei-
ther reliable nor robust when used in realistic set-
tings where there is task uncertainty or environ-
ment variation. Task infeasibility (when a task may
not be possible) can cause vision-language mod-
els to generate visually unrelated, yet plausible an-
swers (Massiceti et al., 2018). This is dangerous for
users that are limited in their ability to determine if
an answer is trustworthy, either physically or situa-
tionally, e.g., users that are low-vision or driving.

"MOoTIF’s collection is ongoing and its current version can
be found at https://github.com/aburns4 /MoTIF.
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Figure 1: Example MoTIF tasks and their demos. An-
notators attempt natural language tasks in apps. We ob-
tain a demo of the attempt and find out if it was possible.
For each time step, we capture action coordinates (i.e.,
where clicking, typing, or scrolling occurs) and the app
screen and view hierarchy (illustrated behind it).

Vision-language models also often experience large
performance drops in new environments due to do-
main shift, reducing the impact of prior work in
application (Yu et al., 2020). These are fundamen-
tal machine learning problems, and they begin with
the data used to train and evaluate learned models.
We propose Mobile app Tasks with Iterative
Feedback (MoTIF), the first large scale dataset
for interactive natural language app tasks. Mobile
apps have a rich variety of environments with chal-
lenging decision landscapes, unlike current vision-
language tasks which use well constrained images
or simulated environments. Moreover, MoTIF fo-
cuses on goal-oriented tasks within apps, while cur-
rent phone assistants and prior work are limited to
voice commands for information retrieval or simple
device-related commands (Li et al., 2020). MoTIF
provides greater linguistic complexity for interac-
tive tasks with over 6.1k free form natural language
commands for tasks in 125 Android apps. Its task
demos include the app view hierarchy, screen, and
action coordinates for each time step, as shown in


https://github.com/aburns4/MoTIF

Dataset Domain |# Envs |# NL Tasks |# Views | Interactive | Real | Feasibility
MiniWoB (Shi et al., 2015) Web 100 0 1 X X
Pasupat et al. (2018) COPAEC| 1200 | 50,000 1 X X
R2R (Anderson et al., 2018) 90 21,567 - X
EQA (Das et al., 2018) House 45,000 0 - X X
IQA (Gordon et al., 2018) 30 0 - X X
ALFRED (Shridhar et al., 2020) 120 25,743 - X X
Rico (Deka et al., 2017) 9,700 0 6.7 X X
PIXELHELP (Li et al., 2020) App 4 187 4 X
MoTIF 125+ | 6,100+ 14

Table 1: Comparison of MoTIF to existing datasets. We consider the number of environments, natural language
commands, and views, in addition to whether the environment is interactive, real (not simulated), and captures task
feasibility. We provide the average number of views for Rico and MoTIF; PIXELHELP reports the median.

Figure 1. MoTIF uniquely includes binary feasibil-
ity annotations for each task, subclass annotations
for why tasks are infeasible, and follow up ques-
tions. Data collection is ongoing; we have collected
task demos for five tasks per app thus far.?

We provide initial results for the simplified task
of predicting a task command to be feasible or not.
We leave multiclass classification of why a task is
not possible and task automation to future work.
We hope automating mobile app tasks and captur-
ing realistic task infeasibility will enable users of
all ability levels to engage with mobile apps with
ease. We also collect demos of the same task across
multiple apps to encourage research in task general-
ization, so that resulting tools are robust to domain
shift and ultimately higher impact in application.

2 Related Work

MoTIF subsumes several datasets and research top-
ics: web task automation, vision-language navi-
gation (VLN), task feasibility prediction, and app
design; we provide a comparison in Table 1. Prior
work in automating web tasks (Shi et al., 2015; Pa-
supat et al., 2018) limit user interaction to a single
screen, unlike MoTIF which contains task demon-
strations with an average of 14 visited screens. Re-
cently, PIXELHELP (Li et al., 2020) was proposed
as a small evaluation-only dataset for 187 natural
language tasks in Pixel phones, but the majority are
device specific (i.e., not in-app commands). As for
VLN datasets, they tend to either have many natu-
ral language commands and few environments, or
vice versa, and most use simulated environments.
Importantly, none of these prior works capture
task infeasibility. Vision-language research has re-

2We have collected demos for nearly 100 apps and decided
to not collect demos for dating apps due to privacy reasons.
We are resolving technical issues with the few remaining apps.

cently begun to explore this topic: VizWiz (Gurari
et al., 2018) introduced a visual question answering
dataset for images taken by people that are blind,
resulting in questions which may not be answer-
able. To the best of our knowledge, VizWiz is the
only vision-language dataset with task infeasibility,
but it concerns static images. Additionally, images
that cannot be used to answer visual questions are
easily classified as such, as they often are blurred
or contain random scenes (e.g., the floor). Gardner
et al. (2020) explored question-answer plausibility
prediction, but the questions used were generated
from a bot, which could result in extraneous ques-
tions that are easy to classify as implausible. Both
are significantly different from the nuanced tasks of
MOoTTF, for which exploration is necessary to deter-
mine task feasibility. Its infeasible tasks are always
within the same Android app category, having an
inherent relevance to the visual environment.

3 Data Collection

Apps were chosen over fifteen Google Play Store
categories ensuring each had at least 50k down-
loads and a rating of 4/5. We use UpWork to crowd
source MoTIF and now detail how we collect task
commands, demos, and feasibility annotations:

Natural Language Commands We instruct work-
ers to write tasks as if they are asking the app to
perform the task for them. The annotators are free
to explore the app before submitting their tasks. We
neither structure the tasks nor prescribe a number
of tasks to be written; this creates natural language
tasks that mimic real users, unlike automatically
generated tasks from prior work (Shi et al., 2015).

Task-Application Pairing We select an initial sub-
set of tasks to collect demos for by clustering tasks
within an Android app category. This captures real-
istic task infeasibility and we plan to extend MoTIF



to all (task, app) combinations within each app cat-
egory. We apply K-Means (Lloyd, 1982) over the
natural language tasks using the average FastText
embedding (Joulin et al., 2016). For task clusters
with reasonable app variance, we assign one task
near each cluster’s centroid to all apps within that
category. Clustering is performed using K = 5, as
we collect demos for five tasks per app for now.

If an app’s tasks are not distributed across clus-
ters, we leave the (task, app) pairs app-specific, or
pair tasks with one to two other apps. App-specific
refers to annotators having explored this app before
submitting tasks for it during our task collection
stage (as opposed to our clustered pairing). This
resulted in 41 apps with category-clustered com-
mands. When analyzing feasibility annotations, we
find that both app-specific and category-clustered
(task, app) pairs contain infeasible tasks.

Task Demos & Feasibility Annotations Next, we
provide annotators with instructions to complete
the task in the provided app. Workers interact with
Android devices remotely through a website that
is reachable on any web browser and are provided
anonymized information if needed for logging in.
After attempting the task, they are brought to a post-
survey to answer if they successfully completed the
task, and if not, why. The survey contains multi-
ple choice questions and fill-in the blank options
regarding task feasibility detailed in Section 4.

4 Data Analysis

We now analyze the collected natural language
tasks, feasibility annotations, and task demos.

Natural Language Commands We collected 6.1k
natural language tasks over 125 Android apps. Af-
ter removing non-alphanumeric characters and stop
words, the vocabulary size was 3,658 words, with
the average task length being 5.6 words. The min-
imum task length is one, consisting of single ac-
tion commands like “refresh” or “login,” with the
longest consisting of 44 words. Average task length
has a range of 1.5 words over all categories.

Feasibility Annotations Thus far, we collected up
to ten demos for 480 (task, app) pairs, creating
nearly 4.7k demos. Of the (task, app) pairs, 143 are
deemed infeasible by at least five crowd workers.
Yet, 16.8% come from app-specific pairs where an-
notators explore the app before submitting tasks,
and not category-clustered pairs. This illustrates
the need to capture task feasibility, as someone fa-
miliar with an app can still pose infeasible requests.

. Infeasible
# Feasible I 0 P Total
Demos 3,323 894 | 155 | 295 | 4,667
F/U Qs 229 372 | 154 | 236 | 991

Table 2: Task demo breakdown for task feasibility and
follow up questions.

Table 2 breaks down the number of feasible and
infeasible tasks and the reasons for why a task is not
possible. These reasons correspond to the multiple
choice options available in the demo post survey:
(I) the action cannot be completed in the app, (U)
the action is unclear or under-specified, and (P) the
task seems to be possible, but they cannot figure
out how to perform it or other tasks need to be
completed first. Table 2 also includes the number
of follow up questions collected for each scenario.

Task Demonstrations We collect up to ten demos
per task and find the average time spent perform-
ing a task demo to be about one minute, varying
between categories by at most 44 seconds. The av-
erage number of screens/views visited (i.e., number
of actions taken to complete a task) is 14. Separat-
ing by feasible versus infeasible tasks, we obtain
an average of 10 and 22 views visited, respectively.

5 Experimental Setup

As MoTIF’s samples contain the natural language
task, demonstration, binary feasibility labels, multi-
class subclass labels for infeasible tasks, and follow
up questions, many research areas can be explored.
For now, we provide baseline results for feasibility
prediction. MoTIF contains nearly 4.7k demos, and
we reserve 500 for testing. We propose a simple
Multi-Layer Perceptron baseline with two hidden
layers of size 512 and 256 for the binary feasibility
classification task. Note that these results provide
an upper bound on performance, as input task de-
mos can be considered the ground truth exploration
needed to determine feasibility, as opposed to a
learned agent’s exploration.

We perform ablations of the natural language
task (T) with various view hierarchy and app screen
representations in Table 3. We also explore how to
aggregate features over time steps in a task demo;
i.e., do we average (Avg), concatenate (Cat), or
take the last hidden state of an LSTM. We cap time
steps included to 20, as about 80% of MoTIF’s
demos are completed within 20 steps. We report
F1 score, with ‘infeasible’ considered the positive
class, as we care more about correctly classifying



Features Cat | Avg |LSTM
(a) View Hierarchy

T+ET 33.8116.3| 27.6
T+ET+1ID 324114.1| 26.8
T+ ET+1ID + CLS 2731152 343
T + Screen2Vec 25.2123.8| 37.3
(b) App Screen

T + ResNet 149] 6.3 | 31.2
T + Icons 17.8] 0.0 | 19.6
(c) Best Combination

T + Screen2Vec + ResNet | 35.0|36.9| 37.0

Table 3: Task feasibility F1 score using a simple Multi-
Layer Perceptron. We provide an ablation over input
features and how features are aggregated over time.

tasks that are infeasible, than misclassifying tasks
that are feasible. We found the F1 score to consis-
tently be zero using the first, midpoint, last, or all
three time steps, confirming the need to include the
exploration as input, as MoTIF’s task uncertainty
is more nuanced than determining relevancy. We
do not include these results in Table 3 due to space.
In-vocabulary text and view hierarchy words are
represented with FastText embeddings and the rest
randomly initialized, with fine-tuning allowed dur-
ing training. For the view hierarchy, we ablate over
the element text (ET), IDs (ID) and class labels
(CLS). The average embedding is used for both the
input task and view hierarchy text. We also use
Screen2Vec (Li et al., 2021), a semantic embed-
ding of the view hierarchy that uses no visual input,
which represents each view using a GUI, text, and
layout embedder. For visual representations of the
app screen, we obtain ResNet152 (He et al., 2016)
features for the standard ten crops of each app im-
age and average crop features per screen. We also
include icon features obtained from a CNN trained
to perform icon classification by Liu et al. (2018).

6 Results

Comparing the first row of Table 3 (a) which only
includes view hierarchy text elements to row two
and three in which element ID or class information
is included, there is a performance trend that less is
more. The (T + ET) input features outperform the
(T+ET +1D) and (T + ET + ID + CLS) variants
when concatenating or averaging over time. How-
ever, the LSTM representation of (T + ET + ID +
CLS) results in the best F1 score across rows one to
three, suggesting that all element information may
be helpful when features are aggregated optimally.
Maximal performance is obtained with Screen2Vec
view hierarchy features when time steps are aggre-

gated with an LSTM, and its performance when
features are averaged over time is higher than all
other view hierarchy ablations, demonstrating that
Screen2Vec is more robust to aggregation method.
Next, we ablate over visual features of the app
screen. While icon representations are trained on
images from the same domain as MoTIF, they are
less effective than ResNet features. The F1 score
drops to zero when the average icon feature over
time is used, illustrating that an average icon rep-
resentation does not carry useful information for
feasibility classification. These features were also
trained with a smaller, non-residual network, and
as a result may be less rich than ResNet features.
Looking at the various ways of aggregating task
demo time steps, concatenating features over time
or using the last hidden state of an LSTM gener-
ally results in better performance, which suggests
that a sequential representation is needed. There is
one exception to this: when both Screen2Vec and
ResNet features are included ((c) in Table 3), aver-
aging over time outperforms concatenation. This
may be a result of nuisance information in the con-
catenated representation. The LSTM aggregation
still outperforms the average representation, which
may be due to the forget gate correctly losing un-
necessary information over the twenty time steps.
The best results for averaging and concate-
nating over time are obtained when combining
Screen2Vec view hierarchy and ResNet screen fea-
tures. However, this combination does not outper-
form the Screen2Vec LSTM representation, which
has the highest F1 score across all experiments.
This suggests a need for better visual features of
non-natural images, as including visual representa-
tions should only sustain or improve performance.

7 Conclusion

We introduced MoTIF, a new dataset on Mobile
app Tasks with Iterative Feedback that contain nat-
ural language commands for actions in mobile apps
which may not be feasible. Not only is MoTIF the
first to capture this type of task uncertainty for in-
teractive visual environments, but it also contains
greater linguistic and visual diversity than prior
work, allowing for more research toward robust, re-
liable, and higher impact vision-language methods.
Initial results on the binary feasibility classification
task demonstrate there is much room for improve-
ment on the feature representations needed to un-
derstand feasibility, as well as better architectures
for jointly reasoning about visual and text data.
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