
Leveraging Language for Abstraction and Program Search

Catherine Wong
1

Kevin Ellis
2

Jacob Andreas
1

Joshua B. Tenenbaum
1

Abstract

Inductive program synthesis, or inferring pro-
grams from examples of desired behavior, offers
a general paradigm for building interpretable, ro-
bust, and generalizable machine learning systems.
Effective program synthesis depends on two key
ingredients: a strong library of functions from
which to build programs, and an efficient search
strategy for finding programs that solve a given
task. We introduce LAPS (Language for Abstrac-
tion and Program Search), a technique for using
natural language annotations to guide joint learn-
ing of libraries and neurally-guided search models
for synthesis. When integrated into a state-of-the-
art library learning system (DreamCoder), LAPS
produces higher-quality libraries and improves
search efficiency and generalization on three do-
mains – string editing, image composition, and
abstract reasoning about scenes – even when no
natural language hints are available at test time.

1. Introduction

The program synthesis paradigm – in which models auto-
matically infer symbolic programs – offers many desirable
properties for robust machine learning systems, including
interpretability, verifiability, and strong generalization in
few-shot learning settings (Gilpin et al., 2018; Appel et al.,
2017; Lake et al., 2017). A diverse range of machine learn-
ing tasks can be formulated as program synthesis problems.
These range from classic synthesis domains like data ma-
nipulation (Delaware et al., 2015; Gulwani et al., 2017) and
semantic parsing (Artzi & Zettlemoyer, 2013; Liang, 2016);
to structured reasoning problems in visual understanding
(Johnson et al., 2017b; Yi et al., 2018), image generation
(Ellis et al., 2017; Ganin et al., 2018; Du et al., 2018), and
policy learning (Fikes & Nilsson, 1971; Cropper & Muggle-
ton, 2015; Silver et al., 2020).

*Equal contribution 1MIT 2Cornell University. Correspondence
to: Catherine Wong <catwong@mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

This paper introduces Language for Abstraction and Pro-

gram Search (LAPS), a framework for improving the ef-
ficiency and generalizability of learned program synthesis
models using natural language. In LAPS, language guides
learning of both libraries of reusable functions and search
models for synthesizing programs. Strong program libraries
and search methods are the core ingredients of program
synthesis (Gulwani et al., 2017). Recent approaches to pro-
gram synthesis attempt to learn search models (Gulwani
et al., 2015; Polozov & Gulwani, 2015; Balog et al., 2016;
Devlin et al., 2017) and program libraries, often jointly with
a search model over the library (Shin et al., 2019; Dumancić
& Cropper; Ellis et al., 2020; Lázaro-Gredilla et al., 2019).
However, even the current best learning approaches can
be computationally inefficient (often upwards of thousands
of CPU hours) and do not always discover generalizable
libraries or search strategies.

LAPS builds on the intuition that natural language offers a
powerful source of information for tackling both learning
problems. Language simultaneously provides an efficient
channel for communicating the structure of the search space
(an instruction like draw a large hexagon next to a small
pentagon decomposes a complex problem into named parts)
and a lexicon that names the most important reusable con-
cepts in a given domain (asked to write a graphics library
for future problems, a sensible programmer would probably
consider abstracting out a routine that draws parameterized
polygons on the basis of the instruction wording alone).

In this work we show how inducing jointly compositional
generative models over natural language and programs pro-
vides a strong scaffold for library and search model learning
in a hierarchical program induction model. When integrated
into a state-of-the-art learning algorithm, DreamCoder (El-
lis et al., 2020; 2018), our approach dramatically improves
performance on three different synthesis domains: string
editing, structured image generation and scene understand-
ing. Compared to the base synthesis approach, LAPS solves
and learns more quickly from synthesis tasks, and produces
higher-quality libraries that improve generalization to down-
stream tasks without natural language hints.

LAPS builds on several recent developments in (non-
language-based) program synthesis, so we begin with a
review of related work (Sec. 2), then give the formal prob-

Leveraging Language for Abstraction and Program Search

+ Iteratively learned jointly
compositional generative models over
program library and language

(ii) Abstraction is structured
over language to learn
functions that compose like
language

(i) Neural search learns from generated
language-annotated programs to condition
on language as a high-level training signal

Language-annotated
training tasks

+ Iteratively learned library as a
generative prior over programs

(ii) Abstractions learned from
training programs may be
overfit to training tasks

(i) Conditional neural search learned from
program samples can struggle to
generalize to hard training tasks

Training tasks with no
ground truth programs

A. Base learned synthesis
algorithm (DreamCoder)

a small nine gon
next to a small
square

four nested squares

a five sided snowflake
with a short line and a
small seven gon as
arms

move_pen (for ∞ (move_pen
(* unit_line 3)
(/ 2π 6)))

learned_fn_0 = (for ∞
(move_pen (* unit_line 3)
(/ 2π x)))

gon_fn = (for ∞ (move_pen
x (/ 2π y)))

large six gon

B. Language for abstraction and
program search (LAPS)

(for ∞ (move_pen
(* unit_line 3) (/ 2π 6)))

large_fn = (* unit_line 3)

....leverages compositional generativity of programs to learn

....leverages compositional generativity of language to learn programs

L Library

Program

Executed
example

Joint library-
language model

(Program,
language)

Executed
example and
annotation

J

large six gon

forward sample
programs

learned execution-
conditioned inverse

large six gon (for ∞ (move (*
unit_line 3) (/
2π 6)))forward sample

programs and
language

“large six gon”

learned execution
and language
conditioned inverse

(for ∞ (move _pen
(* unit_line 3) (/ 2π 6)))

unit_line
for

*

add back to learned library

add back to learned library

learned_fn_0

gon_fn

“large”
“line”

large_fn

abstract over
discovered
programs

abstract jointly
over programs
and language

“gon”
move_pen

unit_line
for

*

Figure 1. Our model, Language for Abstraction and Program Search (LAPS) integrates natural language into base learned synthesis
algorithms formulated as hierarchical Bayesian inference (A, left) for jointly learning a library of program abstractions and a neural

search heuristic for synthesis. We give an extended formulation (B, left) defined jointly over the program library and natural language
descriptions of synthesis tasks, that can be used to incorporate natural language into both abstraction and search heuristic learning. When
incorporated into a concrete learning algorithm, DreamCoder (A, right) we show that LAPS allows the model to leverage language richly
during training to improve the generalization of both the learned neural search model and the learned library of program abstractions.

lem formulation (Sec. 3) and baseline program synthesis
approach (Sec. 4). We then describe how LAPS extends the
base problem formulation to include language in learning
(Sec. 5) and conclude with empirical results (Section 6).

2. Related Work

Our work draws on recent program synthesis approaches
that learn to synthesize programs from examples using neu-
ral models to guide search (Gulwani et al., 2015; Polozov &
Gulwani, 2015; Balog et al., 2016; Parisotto et al., 2016; De-
vlin et al., 2017; Shin et al., 2018; Alur et al., 2018; Kalyan
et al., 2018; Polosukhin & Skidanov, 2018; Abolafia et al.,
2018; Nye et al., 2019; Ellis et al., 2019; Si et al., 2019;
Ye et al., 2020a); and learn libraries of symbolic abstrac-
tions from a collection of related programs or tasks (Dechter
et al., 2013; Zhang et al., 2017; Shin et al., 2019; Dumancić
& Cropper; Ellis et al., 2018; 2020). Our computational
formulation builds on hierarchical Bayesian formulations
of program learning that frame both synthesis and library
learning as probabilistic inference (Lin et al., 2014; Liang
et al., 2010; Lake et al., 2015; Ellis et al., 2020).

Natural language has also been used to scaffold latent struc-
ture learning in both neural and symbolic representation
learning algorithms (Frome et al., 2013; Jia & Liang, 2016;
Andreas et al., 2017; Ye et al., 2020b; Goyal et al., 2020;

Liang et al., 2020; Mu et al., 2019; Luketina et al., 2019),
and as a high-level specification for program synthesis tasks
(Ye et al., 2020a; Nye et al., 2019; Polosukhin & Skidanov,
2018; Ye et al., 2020b; Desai et al., 2016; Srivastava et al.,
2017). Here we present an approach that integrates language
annotations in training for jointly learning a more general-
izable library and the search algorithm over it that can be
used without language on future tasks.

3. Inductive synthesis and library learning

Consider the problem of writing a graphics program to draw
the large hexagon image in the left column of Fig. 1. This
is an inductive program synthesis problem: a task t (like
draw a large hexagon) is specified with examples of what
a program should do, where each example is given as an
input x (in this case, the blank image canvas) and the desired
output y (the large hexagon image.) A program ⇢ solves
the task if it produces outputs that are consistent with the
specification when executed – that is, if evaluating ⇢ under
an execution model E yields J⇢KE(x) = y.

Program synthesis begins with a library L = {l0, ..ln}
containing the set of primitives that can be combined to pro-
duce solution programs, such as the (pseudo-code) primitive
functions in a simple graphics language:

L = move pen|unit line|for|*|⇡|1|0|1|2|...

Leveraging Language for Abstraction and Program Search

which draw lines on a canvas parameterized by their length
and angle. Given a library, there is also the problem of
search: effective program synthesis requires a search strat-
egy S that can be given a task specification (such as the
image of a hexagon) and automatically discover a solution
program like the one shown in Fig. 1:

(for 1(move pen(⇤ unit line 3)(/ 2⇡ 6))

by searching over programs built from primitives in L.

Both of these ingredients – the library L, and the search

strategy S – can be made much more efficient if the syn-
thesis engine will be expected to solve multiple related
problems. In the graphics domain, for example, synthesis of
the various images depicted in Sec. 1 is much more easily
accomplished using a library like

Lf = polygon|large line|small line...

in which the original hexagon task can be expressed as
polygon(6, large line)

A good library already provides a foundation for efficient
search by making solutions easier to express. Even with
such a library, search can be further guided by information
about the prior structure of programs (for example, the fact
that polygon is typically called with a large line or
small line function as a second argument) and by in-
formation about the target task itself (for example, the fact
that the target image contains six line segments). Thus, one
way to describe an effective search strategy S is via a prior
over programs P(⇢|L) in the library and a conditional in-
ference model for inferring P (⇢|t,L), the distribution over
programs likely to satisfy the observed task examples t.

The foregoing discussion lays out the basic ingredients of
a hierarchical Bayesian formulation of program synthesis
(used in learning algorithms like (Ellis et al., 2020; Lake
et al., 2015; Dechter et al., 2013)) for jointly learning a
library and search model from data (see the graphical model
in Fig 1A, left). We can formally define the model’s prior
over programs as P [⇢|L, ✓], based on its library L and pa-
rameters ✓ that specify a distribution over programs that can
be written using L. The joint distribution over the observed
tasks t and latent programs, library, and parameters, is:

�(L, ✓) = P[L, ✓]
Y

t2T

X

⇢

P[t|⇢]P[⇢|L, ✓] (1)

where P[L, ✓] is a prior over all possible libraries and pa-
rameters, and P[t|⇢] is the likelihood that the examples in t

intended to specify the latent program ⇢ (for our purposes,
P[t|⇢] = 1 if the program produces the desired output ex-
amples and 0 otherwise.) Learning in this model involves
estimating the optimal library and its parameters

L
⇤ = argmax

L

Z
�(L, ✓) d✓ ✓

⇤ = argmax
✓

�(L⇤
, ✓)

(2)

along with a conditional model P[⇢|t, L⇤] that can infer
programs for new tasks.

This formulation also foreshadows a straightforward way
in which linguistic descriptions of tasks (like those in the
first column of Fig. 1) could be integrated into learning: we
could simply extend the conditional model as P[⇢|t, d, L⇤]
to include the description d. We come back to this (and
describe a more complete integration) in our approach, but
first describe a concrete implementation of Eq. 2 on which
we can realize the language-enriched model.

4. Base learning algorithm: DreamCoder

The LAPS framework we describe in this paper is a general
one for extending Bayesian models of program learning
like the one in Eq. 6 to incorporate information from lan-
guage. For concreteness, however, our presentation and
experiments build on the specific DreamCoder algorithm of
(Ellis et al., 2020), which we briefly review here. We choose
DreamCoder because it exposes a modular implementation
of the library and search learning problems in Eq. 6 and
has previously demonstrated state-of-the-art performance
across a variety of synthesis domains (Ellis et al., 2020).

DreamCoder is initialized with a base library L0 of starting
primitives and returns a library Lf containing program ab-
stractions learned from solving training tasks, and a learned
neural search model Q(⇢|t,L) that predicts high probabil-
ity programs, conditioned on the task examples. Learning
involves an alternating search over solution programs to the
training tasks (given a current library Li and search model
Qi) and updates to the library and search model based on
new solved tasks. We give details on each component below.

4.1. Program prior

Given a library L consisting of one or more functions l 2 L,
DreamCoder defines the prior over programs as a probabilis-
tic context free grammar (PFCG) (Johnson, 1998) where
programs are productions generated by composing weighted
functions l 2 L. Formally, DreamCoder assigns a real-
valued weight ✓i to each library function li 2 L (which
can be normalized to give the probability P [l|L, ✓] for each
primitive). The prior probability of any program ⇢ written
using primitives in the library is then given by

P [⇢|L, ✓] =
Y

l2⇢

P [l|L, ✓] (3)

the weighted product of probabilities of all of its constituent
primitives. As all P [l|L, ✓] < 1, this is equivalent to a
description length prior over programs written using the
library: longer programs (with more constitutent primitives)
will have lower prior probability under Eq. 3 since P [l|L, ✓]
monotonically decreases as |⇢| = |{l 2 ⇢}| increases.

Leveraging Language for Abstraction and Program Search

4.2. Amortized conditional inference

To identify programs that solve tasks t while obtaining high
probability under P [⇢|L, ✓], DreamCoder trains a neural
search heuristic Qi(⇢|t,Li) at each iteration i to approx-
imate the inverse conditional model. The heuristic uses
a neural model trained to predict programs written in the
current library Li according to the posterior:

Qi(⇢|t, L) ⇡ P[⇢|t, (Li, ✓i)] / P[t|⇢]P[⇢|(Li, ✓i)] (4)

conditioned on an encoding of the training examples (e.g.
an embedding of the image in the task specification). This
model is trained in the distant supervision setting (which
begins with no supervised program data) by leveraging the
forward generative model: sampling programs from the
prior, executing them to produce observed tasks, and then
minimizing Q(⇢|t, L) in Eq. 4 on the sampled programs,
conditioned on their executions. This generative training
procedure is generally applicable to any neural implemen-
tation of Q(⇢|t,L)). (But see (Ellis et al., 2020) and our
supplementary material for additional details on the model
architecture, which we reimplement in our experiments)

4.3. Abstraction learning as program compression

(maximizing the likelihood of programs)

The DreamCoder algorithm also iteratively updates the li-
brary (Li, ✓i) to approximately optimize Eq. 2 (finding
L
⇤
, ✓

⇤ which maximize the joint distribution over the in-
ferred latent programs, library, and its parameters). (Ellis
et al., 2020) leverage equivalence to a compression problem
defined over programs and the library. As discussed in 4.1,
the PCFG program prior is equivalent to a description length
prior over programs. (Ellis et al., 2020) place an additional
Dirichlet prior over the library description length:

P [L] / exp

0

@��

X

⇢2L

size(⇢)

1

A (5)

Estimating the optimal library then becomes the problem
of inferring new library abstractions which can jointly com-
press the latent training programs (rewritten under the new
library Li+1) and the description length |Li+1| of the up-
dated library (to optimize for shared abstractions across
programs). This objective would still require inference over
all possible ways of refactoring the latent programs under
the updated library. (Ellis et al., 2020) approximate this
by only considering candidate abstractions and program
refactorings that can be found based on an efficient algo-
rithm based on lambda-abstraction, which in our simplified
notation could refactor the large hexagon program

(for 1(move pen(⇤ unit line 3)(/ 2⇡ 6))

to expose a candidate semantic fragment like

�x.(for 1(move pen(⇤ unit line 3)(/ 2⇡ x))

while jointly rewriting the original program using this ab-
straction. Notably, this fragment – which draws polygons
with lines of length 3 for sides – is not the most intuitively
generalizable for the graphics domain. A programmer with
more domain-specific prior knowledge would probably pre-
fer an abstraction like

�xy.(for 1(move pen(⇤ unit line y)(/ 2⇡ x))

which additionally parameterizes the polygon by the length
of its sides, and is semantically equivalent to the high-level
polygon fn described in the problem setup in Sec. 3.
However, learning abstractions by compressing the library
and current solved training tasks may actually disfavor this
more intuitively generalizable (but less compressive) candi-
date. Our second key goal in introducing language will be
to leverage it as an additional source of prior knowledge to
improve abstraction generalization.

5. Our Approach: Language for Abstraction

and Program Search

Our work considers how the general learning problem –
jointly learning the library L which defines the prior over
programs and the conditional search strategy S which in-
verts from tasks to programs – can be enriched in the
language-annotated setting. Here, at least a subset of the
training tasks are additionally annotated with a natural lan-
guage description dt, as in Fig. 1B, such as the natural
language description large six gon for the large hexagon
drawing task. Language offers a more direct source of infor-
mation for discovering a library like the one in our setup,

Lf = polygon|large line|small line...

if we leverage the intuitive prior expectation that general-
izable abstractions (like a candidate polygon function)
should correspond systematically to compositional named
fragments in natural language (like the token gon).

Language can also be leveraged by the conditional search

model: learning systematic correspondences between lan-
guage and programs should make it easier to generalize
from descriptions like large six gon to guide conditional
search on complex but compositionally related tasks (like
the small nine gon next to a small square in Fig. 1B) on the
basis of shared words like gon.

Our approach, LAPS (Language for Abstraction and Pro-

gram Search) formalizes these intuitions by extending the
hierarchical Bayesian problem formulation over programs
given in Sec. 3 to include a joint definition over natural
language (see graphical model in Fig 1B, left). In particu-
lar, we assume the existence of a jointly generative model
J(⇢, d) over both programs and their natural language de-
scriptions, which allows us to extend the original prior over

Leveraging Language for Abstraction and Program Search

programs P [⇢|L, ✓] defined on the library L to the joint
prior P [⇢, d|J, ✓] where ✓ is generalized to the parameters
of the joint model. The extended distribution over the ob-
served task examples t, latent programs ⇢, descriptions d,
and joint model J with parameters ✓ becomes

�(J, ✓) = P[J, ✓]
Y

t2T

X

⇢

P[t|⇢]P[⇢, d|J, ✓] (6)

Learning in the joint setting now involves estimating the
optimal joint model and its parameters

J
⇤ = argmax

J

Z
�(J, ✓) d✓ ✓

⇤ = argmax
✓

�(J⇤
, ✓)

(7)
along with a conditional model P[⇢|t, d, J⇤] that can infer
programs for new tasks based on the specification examples
and the task descriptions.

In the remainder of this section we first describe a joint
model formulation that can be learned from the language-
annotated training tasks, and then show how the joint model
can be used to inform learning in the concrete base synthesis
algorithm, DreamCoder, as an example of this framework.

5.1. Joint prior over programs and language

We formulate a learnable joint prior J(⇢, d) as

J(⇢, d) = P [⇢|J , ✓]P [d|⇢,J , ✓] (8)

which decomposes into the product of the original program
prior defined on the library P [⇢|J , ✓] = P [⇢|L, ✓L] (where
✓L are the weights of the program prior) and a program to de-
scriptions “translation” model P [d|⇢,J , ✓] = T (d|J, ⇢, ✓T)
(where ✓T are the translation model parameters) which de-
scribes how natural language descriptions are generated
based on latent programs (in our running example, this
model would describe how the large six gon description was
generated conditioned on the program solution for that task.)
This decomposition builds modularly on the original pro-
gram prior defined on the underlying program library. Learn-
ing T (d|⇢,J) formalizes the intuition that there should be
a learnable correspondence between programs that solve
tasks and the language that describes them.

T (d|⇢,J) can be implemented in many ways (e.g. (Wong
& Mooney, 2007; Joshi & Schabes, 1997; Bahdanau et al.,
2014; Chen et al., 2018)) and is compatible with the vast
literature on structured translation between languages, in-
cluding natural languages and programming languages.

Our experiments use the translation model popularly known
as IBM Model 4 (Brown et al., 1993), one of a class of
well-studied Bayesian machine translation models (Gal &
Blunsom, 2013) which decompose T (d|⇢, L) into

T (d|J, ⇢, ✓T) /
Y

wi2d,lj2⇢

t(wi|lj) (9)

a product of token-level translation probabilities t(wi|lj)
between program fragments li in a task’s latent program ⇢

and words wj in the task description d. (See supplementary
materials for model implementation and training details.)
This token-level decomposition more directly captures the
intuition in our setup: that abstractions in a programming
library generally correspond systematically to individual
names in natural language descriptions, and that the in-
verse conditional search can be guided based on a generally
compositional relationship between program primitives and
words. This formulation also allows these compositional
relationships to be inferred from fewer observed examples
than would be possible with other translation models with
weaker inductive biases. However, Eq. 8 should extend to
include any similar translation model and need not include
this stronger decomposition.

In LAPS, the joint model also can be viewed as a control-
lable interface for incorporating additional prior knowledge
about language in learned program synthesis. Learned trans-
lation models T (d|⇢,J) are often parameterized to directly
maximize the likelihood of the observed language (here,
with respect to inferred latent training programs). However,
our formulation also supports T (d|⇢,J) enriched to model
additional conditional priors over natural language (such
as speaker-specific language usage, or pragmatics models
that capture a speakers’ other communicative goals (Grice,
1989; Goodman & Frank, 2016).)

In our experiments (Sec 6.1) we showcase this with results
from an extended model incorporating an additional mutual

exclusivity prior. Mutual exclusivity models the expectation
that newly encountered words should correspond to different
meanings than known ones. This prior has been shown to
play an important role in language learning in cognitive
science (Frank et al., 2009; Markman & Wachtel, 1988),
and in machine learning models (Gandhi & Lake, 2019).

In the synthesis setting, mutual exclusivity can capture
the expectation that new words (on unsolved tasks with-
out known latent programs) should correspond to different
program components than words already well-modeled in
the existing joint model J(d, ⇢). In the distant supervision
setting, this allows the model to incorporate a prior over
words that do not appear in currently solved training tasks
(for which there would be otherwise no learning signal to
induce a translation model, without inferred latent programs
for supervision). Our extended model incorporates this prior
by updating Eq. 9 to distinguish between Wknown (words
that appear in solved training tasks with latent programs)
and Wnew (newly encountered words) as

TME(d|J, ⇢, ✓T) /
Y

wi2d,lj2⇢

([wi 2 Wknown]t(wi|lj))

([wi 2 Wnew]p(l|L, ✓L)�1)
(10)

Leveraging Language for Abstraction and Program Search

where new words are modeled as inversely related to primi-
tives under the program prior fit to previously encountered
tasks – concretely, modeling the expectation that new words
should be more likely to relate systematically to less-used
program components than those used so far.

5.2. Integrating the joint model into amortized

conditional search

The joint model allows LAPS to incorporate natural lan-
guage into the learned conditional search model over pro-
grams. In place of the original neural amortized model in
the base algorithm (Sec. 4.2), we train an extended model
Q(⇢|t, d, Ji) that also conditions on language, to predict
programs according to the posterior:

Q(⇢|t, d, Ji) ⇡ P[⇢|t, d, (J, ✓)]
/ P[t|⇢]P[⇢, d|(J, ✓)]
/ P[t|⇢]P[d|⇢, T, ✓T]P[⇢|(L, ✓L)]

(11)

where (T, ✓T) is the translation model and (L, ✓L) is the
program prior in our joint model formulation. Importantly,
we can train the language-conditioned model by using sam-
ples from the joint generative model, consisting of sampled
programs and corresponding generated language. As with
the original learning setting, the sample-based training al-
lows LAPS to learn a generalizable neural search heuristic
that conditions on language in training from very few ex-
amples in the distant supervision setting. We can also now
see the benefits of richer language-specific priors such as
mutual exclusivity in guiding learned conditional search:
the neural model trained to amortize inference from the
joint generative model can also be trained to approximate
this mutual exclusivity bias, enabling better exploration and
generalization in the presence of new words.

5.3. Abstraction learning as joint model compression

As in the base learning algorithm, the extended joint model
objective in Eq. 2 and 7 also allows LAPS to incorpo-
rate natural language into abstraction learning. Extending
the compression-based abstraction objective in the base al-
gorithm – which optimized for libraries that maximally
compress the latent training programs and library – re-
quires defining a prior over the language-program trans-
lation model T in terms of the optimal program library.

We place a prior over T defined on a program library L and
a natural language token vocabulary W as

P[T |L] /
X

l2L,w2W

�H(t(w|l,L, ✓T)) (12)

where H(t(w|l,L, ✓T)) = � log(t(w|l, ✓T)). This models
the intuition that a good library contains program abstrac-
tions which correspond well to individual language tokens.

This translation model prior also allows our algorithm to in-
herit the desirable property from the base algorithm in (Ellis
et al., 2020): the extended compositional prior can still be
efficiently re-approximated with respect to new candidate
program abstractions based on their program subcompo-
nents in the existing library, and the component translation
distributions t(w|l,L, ✓T) in the current translation model.
As in the base synthesis algorithm, we finally re-estimate the
translation model T 0(d|L0

, ⇢
0
, ✓

0
T) for the next iteration of

training to refit the task annotations and programs refactored
under the updated library.

6. Experiments

We demonstrate LAPS on three different domains: string
editing, compositional graphics drawing, and scene rea-
soning, which we choose to represent a diverse range of
tasks and accompanying language (Fig. 2). In all three do-
mains, we find that compared to the base synthesizer, LAPS
learns and solves heldout synthesis problems faster (Table
1, Sec. 1-2), and produces higher-quality libraries that im-
prove generalization even when natural language hints are
not available after training (Table 1, Sec. 3).

Below we summarize each domain. We then discuss results
showing that LAPS is effective because of how the hier-
archical model incorporates language during learning: we
find that (1) LAPS searches more effectively during training,
enabling it to solve and learn from more diverse training
tasks than the baseline model; (2) LAPS abstracts more
effectively during training, adding in more generalizable
library routines as it learns; and (3) LAPS can use language
during testing if it is available, as an important additional
source of high-level information during synthesis.

6.1. Domains

All three domains consist of a dataset of inductive synthesis
tasks t specified as input/output examples; procedurally gen-
erated synthetic language annotations; and human language
annotations provided by Mechanical Turk workers. We use
synthetic language as our primary evaluation benchmark:
we are interested in probing a controllable learning setting
where words are systematically reused and composed, but
refer to concepts at a much higher level of abstraction than
the base programming language with which the system is
initialized. However, we also use human language to eval-
uate the practicality of the approach in real-world settings.
Additional information for all domains is in the supplement.

String editing: structured string transformation problems
taken from (Andreas et al., 2017) (n=1000 train; n=500 test).
Tasks consist of input dictionary strings transformed using
randomly sampled regular expression transducer (30 I/O
examples per task). We choose this domain to demonstrate

Leveraging Language for Abstraction and Program Search

A. String Editing (shown with sample I/O examples of n=30 and random human description of n=3)

pavings → pavinb
forgiveness → forgiveneb
enterprises → enterprises

if the word ends with consonant s
replace that with b

if the word ends with a consonant
and s then change them both to b

cools → gcools
cultivator → gcultivator
bloomed → bloomed

(Synth) if the word starts with
consonant vowel add g before that

(Human) if word begins with
consonant followed by vowel , add
an g to the beginning

topazes -> topaz
suburbs -> suburbs
reckless -> reckls

if there is e s remove that

remove the e s from the word

shouldering -> shoululdering
hath -> hath
outrun -> oututrunun

if there is u any letter double that

the next letter with the letter u should be
repeated as a pair for this transformation

C. Compositional Graphics (shown with random human description of n=3)

Simple shapes Complex objects Compositional objects and relations

a small triangle
small triangle

a medium square
one medium square

a medium eight gon
octogon

a big circle
just a circle

a seven pointed star
a seven sided snowflake with
long triangles as arms

a four stepped zigzag
four step ladder going from
top to bottom

a greek spiral with eight turns
a long line that curls in on
itself at right angles

a small five gon next to a
small seven gon
a five sided gon beside a
seven sided gon

a small nine gon separated
by a big space from a small
circle
nine gon on left with small
circle on right not connected

a small triangle connected by a
big line to a medium triangle
a small triangle with a long line
and a medium triangle

six small five gons in a row
six overlapped pentagons
going left to right

seven sided snowflake with a
short space and a short line
and a short space and a
small triangle as arms
a seven sided snowflake with
seven triangles and line

four nested squares
four stacked squares

B. Scene Reasoning (shown with sample I/O examples of n=7 and random human description of n=2)

Original CLEVR (sample templates from full set) Extended scene manipulation and counterfactuals

What number of gray rubber cubes are there?

how many grey rubber cubes do you see

2

1

2

There is another thing that is the same
color as the large rubber thing; what is it
made of?
what material is the other object that is
the same color as the large rubber object

metal

rubber

metal

What if the gray sphere became a small
green metal sphere?

what if the grey ball morphed into a small
green ball

If you removed the red things, how many
spheres would be left?

count the spheres would be left after
removing the red things

3

3

0

a small semicircle
(f19 (f9 0 x))

a medium semicircle
(f3 (f9 0 x))

a big semicircle
(f9 (* (/ ε 1) 5) x)

f0=(λ (x y z) (for x (λ
(u v) (move z y v))))

1

. . .

for

pen-up

f4=(λ (x y z) (f0 x (/ 2π
y) 1 z))

f5=(λ (x y) (f4 x x y))

0.27 | gon
0.22 | small

f9=(f0 ∞ ε)

0.09 | small

0.07 | semicircle

f24=(λ (x y) (f23 (λ (z u)
(f21 y 0 x u))))

f17=(λ (x) (pen-up (λ (y)
(f16 x y))))

0.67 | separated
0.06 | space

0.09 | snowflake
0.09 | arms

D. Example initial
graphics primitives

shown with learned high probability p(word | primitive)

...

...

a small five gon
(f5 5 x)

a small nine gon
(f5 9 x)

a medium seven gon
(f5 2 (f20 7 x))

eight sided snowflake with a
small seven gon as arms
(f24 7 8 x)

five sided snowflake with a short line
and a medium five gon as arms
(f24 5 (λ (x) (get/set (λ (y)
(f2 1 (f41 5 y)))x)) z)

....and example program abstractions learned with language

rotates and draws a
unit line

lift pen between
consecutive shapes

rotational symmetry by
number of sides

move pen in
parameterized loop

smooth curve rotate shapes
around axis

move

2

+

-

Figure 2. (A, B, C) Example tasks from all three synthesis domains shown with synthetic and sample human language annotations.
Inductive synthesis domains are shown with a random subset (n=3) of the paired input/output examples. Human language annotations
are also randomly sampled (all domains were annotated by multiple people for a broader range of language.) (D) Representative
initial program primitives and library abstractions learned with LAPS for the graphics domain. Shown with example tasks solved with
synthesized programs containing the learned abstractions and high probability natural language learned from the joint model.

Leveraging Language for Abstraction and Program Search

LAPS on an important classic synthesis domain (Lau &
Weld, 1998). The dataset of Andreas et al. (2017) contains
human annotations; synthetic language annotations are gen-
erated over the ground-truth regexes using templates based
on the original human annotations. We initialize synthesiz-
ers with functional programming primitives (map, fold, cons,
car, cdr, length, index) and character constants (following
the simpler text editing domain in the baseline paper (Ellis
et al., 2020)). The neural search model encodes the I/O task
examples as character arrays with a bidirectional GRU.

Compositional graphics: inverse graphics problems
(n=200 train; n=111 test) where each synthesis problem
is specified by an image and solved by synthesizing a pro-
gram in LOGO Turtle graphics (Abelson & DiSessa, 1986).
This domain is inspired by the graphics domain in (Ellis
et al., 2020) but intentionally re-designed to be much more
challenging (ground-truth programs are much longer on
average in the base programming language) and explicitly
compositional. Synthetic language annotations are gener-
ated with high-level templates over the objects and relations
in each task; human annotations are sourced as image de-
scriptions from MTurk. We initialize synthesizers with the
graphics primitives in (Ellis et al., 2020). The neural search
model encodes image examples with a CNN.

Structured scene reasoning: inductive scene reasoning
tasks (n= 212 train; n=115 test) where each synthesis prob-
lem is specified by a structured input scene, and outputs
can be a number (how many red rubber things are there?),
a boolean value (are there more blue things than green
things?), or another scene (what if all of the red things
turned blue?). This domain is modeled on CLEVR (John-
son et al., 2017a) but designed to support inductive synthesis
tasks specified over the symbolic scene representations (an
array of objects represented as a dictionary of attributes)
from the original CLEVR dataset generator in (Johnson
et al., 2017a). We also add additional tasks that require
generating or imagining new latent scenes (how many metal
things would be left if all the blue cylinders were removed?),
which are not solvable in the initial high-level DSL hand-
designed in (Johnson et al., 2017b) (and used in synthesis-
based CLEVR approaches like (Yi et al., 2018)). We include
these to demonstrate a key feature of our approach: the abil-
ity to learn generalizable libraries by initializing with a
basic but expressive set of primitives, rather than restrict-
ing the program space pre-emptively with a hand-designed
language. We use synthetic language annotations generated
from the ground-truth templates in (Johnson et al., 2017a)
(and templates written in the same style for the extended
tasks); human annotations are sourced from Mechanical
Turk workers shown the same tasks. We initialize synthesiz-
ers with similar functional programming primitives to the
string-editing domain and domain-specific query functions
and constants (get color(x); get shape(x); blue; cube). The

neural model encodes the task examples as flattened arrays
of object attributes using a bidirectional GRU.

6.2. Results

On all three domains, we compare our model against the
baseline synthesizer (Table 1, DreamCoder, no language);
a multimodal baseline (Table 1, multimodal, no genera-

tive translation model) that trains a neural model directly
on solved training tasks (similar to neural synthesis models
like DeepCoder model (Devlin et al., 2017) but augmented
to condition on language); and ablated variants of our own
model (Table 1; LAPS rows) to evaluate the additive con-
tributions of the individual learning components. We com-
pare all models using a matched search budget per task and
number of training iterations overall, determined using a
hyperparameter search with the baseline. The supplement
and released code contains full training details to replicate
all experiments; and additional qualitative results.

Here we discuss evidence that our approach is effective
specifically because of how language drives learning in the
hierarchical joint model formulation:

(1) LAPS searches more effectively during training, enabling
it to solve and learn from more training tasks than the base-
line synthesizer. Under the hierarchical model formulation,
search and abstraction are closely related: successfully solv-
ing tasks is the basis for abstraction learning.

Comparing the model learning trajectories (Fig. 3) on train-
ing tasks shows that the LAPS models consistently search
more effectively during training: at each iteration they solve
more tasks within a given time budget. Fig. 3 also highlights
that LAPS models improve training robustness in the distant
learning setting: as in the baseline paper (Ellis et al., 2020),
we find the baseline model learning to be highly variable
without a training curriculum (compare training curves from
Fig. 3 with different random seed replications; and the best
vs. mean performance, Table 1.) Comparing the LAPS
ablations also suggests that linguistic priors (like mutual
exclusivity) can indeed be practically useful here during
learning (Table 1, compare LAPS with ME and without).

What if we do have the prior knowledge for a good cur-
riculum? In the scene reasoning domain (where previous
approaches (e.g. (Mao et al., 2019) have argued for a cur-
riculum), we also test a simple curriculum by ordering tasks
according to their natural language description token length
(which would be available in the absence of ground truth
programs). Table 1 shows that our model is still much more
effective, and that non-curriculum performance is in fact
comparable to curriculum performance.

(2) LAPS abstracts more effectively during training, adding
in more generalizable library routines as it learns. The
variability across training replications in the baselines also

Leveraging Language for Abstraction and Program Search

Table 1. % held-out test-tasks solved. To compare robustness, we run random seed replications in the graphics domain for the synthetic
language dataset. Best reports the best model across replications; Mean averages across replications.
Language Model Strings (ntest = 500) Graphics (ntest = 111) Scenes (ntest = 115)

% Solved % Solved (Best) % Solved (Mean) % Solved (Curric.) % Solved (Mean.)

Synth train/test DreamCoder (no language) 33.4 49.55 42. 64 67.80 73.9
Synth train/test Multimodal (no generative translation model) 46.00 26.12 23.20 76.50 49.5

Synth train/test LAPS in neural search 52.20 92.79 52.93 95.6 88.1
Synth train/test LAPS + mutual exclusivity 57.00 86.49 80.18 96.5 82.3
Synth train/test LAPS + ME + language-program compression 54.60 98.19 81.98 95.6 95.9

Synth train/human test LAPS + ME + language-program compression 54.60 89.20 – 97.4 –
Human train/human test LAPS + ME + language-program compression 48.60 58.55 – 95.6 –

No language at test: learned library comparisons

No language on train/test Original DSL; Enumerative 0.06 0.00 – 27.8 –
No language on train/test DreamCoder (best library): Enumerative 27.2 41.44 – 53.6 –
No lang at test LAPS (best library): Enumerative 33.2 62.16 – 93.04 –
No lang at test LAPS (best library): example-only neural synthesis 52.4 91.0 – 95.6 –

DreamCoder
(no language)

Multimodal
(no generative)

LAPS
in neural search

LAPS + mutual
exclusivity

%
 S

ol
ve

d

Learning Iterations

LAPS + ME
+ lang. compression

Figure 3. Learning curves comparing baselines and LAPS models in Table 1, showing % heldout tasks solved on the graphics domain
over random training task orderings. (Mean results in Table 1 shows average test-time performance from the trained model replications.)

highlights a challenge for abstraction learning: not all shared
subroutines encountered in training generalize well to new
tasks. Adding poor abstractions can actually be detrimen-
tal: they increase the combinatorial search space. We find
that our approach produces higher-quality libraries after
training: Table 1 (no language at test time section) shows
that we consistently improve performance in a head-to-head
comparison using enumerative search from the library pri-
ors alone – in some domains, enumerative search with our
model’s library outperforms neurally guided search from
the baseline model. We also find the learned library is
effective for neurally-guided synthesis when no language
hints are available after training (Table 1, no language at

test, example-guided synthesis), showing that LAPS in-
corporates language to learn a much more effective library
overall, which generalizes to the non-language setting. See
supplement for example learned abstractions from Lf .

(3) LAPS can use language during testing if it is avail-
able, though it doesn’t need to for competitive performance.
Clearly, language can provide a useful source of high-level
information if it is available for new tasks. Our approach
produces a neural synthesizer pre-trained to condition on
language where available. Results on all three domains show
that the model can use it to achieve additional performance
gains (Table 1, see language at test rows). We also find
that the models trained on synthetic annotations generalize
effectively to natural human language at test (Table 1, synth
train, human test) (similar to the findings in (Marzoev et al.,
2020)), suggesting that when even finding human training
annotations is too costly, in many cases hand-writing nat-
ural language templates to accompany a few ground-truth
programs is likely sufficient (and easier than designing a

full domain-specific programming language).

7. Conclusion

We presented Language for Abstraction and Program

Search (LAPS). LAPS builds on hierarchical Bayesian mod-
els of program learning: we offer a general framework for in-
troducing learned, jointly generative models over programs
and language into program library and synthesizer learning.
Going forwards, an important avenue for scalability will
require exploring different concrete implementations of the
base algorithm and learned model which relates programs
to language. A promising future direction can leverage re-
cent structured, neurally parameterized joint models that can
learn the compositional units of language and more com-
plex joint distributions, and incorporate pre-trained natural
language representations (Joshi & Schabes, 1997; Lee et al.,
2016; Wiseman et al., 2018; Kim et al., 2019).

The hierarchical Bayesian framing also draws connections
to recent computational cognitive models which model hu-
man conceptual representations and learning (Goodman
et al., 2014; Rule, 2020) as inference over program-like rep-
resentations; posit program-like semantics for natural lan-
guage (Portner & Partee, 2008; Fodor, 1975; Margolis et al.,
1999); and provide evidence for the role language plays in
non-linguistic cognition (Pyers et al., 2010; Spelke, 2017;
Lupyan & Zettersten, 2020). Future human experiments
could explore LAPS as a cognitive model, by combining
experimental paradigms for studying language learning with
those for studying non-linguistic abstraction and search (e.g.
(Smith et al., 2003; Hawkins et al., 2019; Amato & Mac-
Donald, 2010; Lake et al., 2015; 2019; Tian et al., 2020).

Leveraging Language for Abstraction and Program Search

References

Abelson, H. and DiSessa, A. A. Turtle geometry: The
computer as a medium for exploring mathematics. MIT
press, 1986.

Abolafia, D. A., Norouzi, M., Shen, J., Zhao, R., and Le,
Q. V. Neural program synthesis with priority queue train-
ing. arXiv preprint arXiv:1801.03526, 2018.

Alur, R., Singh, R., Fisman, D., and Solar-Lezama, A.
Search-based program synthesis. Communications of
the ACM, 61(12):84–93, 2018.

Amato, M. S. and MacDonald, M. C. Sentence processing in
an artificial language: Learning and using combinatorial
constraints. Cognition, 116(1):143–148, 2010.

Andreas, J., Klein, D., and Levine, S. Learning with latent
language. arXiv preprint arXiv:1711.00482, 2017.

Appel, A. W., Beringer, L., Chlipala, A., Pierce, B. C., Shao,
Z., Weirich, S., and Zdancewic, S. Position paper: the
science of deep specification. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 375(2104):20160331, 2017.

Artzi, Y. and Zettlemoyer, L. Weakly supervised learning
of semantic parsers for mapping instructions to actions.
Transactions of the Association for Computational Lin-
guistics, 1:49–62, 2013.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. Deepcoder: Learning to write programs.
arXiv preprint arXiv:1611.01989, 2016.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and
Mercer, R. L. The mathematics of statistical machine
translation: Parameter estimation. Computational linguis-
tics, 19(2):263–311, 1993.

Chen, X., Liu, C., and Song, D. Tree-to-tree neural networks
for program translation. arXiv preprint arXiv:1802.03691,
2018.

Cropper, A. and Muggleton, S. H. Learning efficient logical
robot strategies involving composable objects. AAAI
Press/International Joint Conferences on Artificial Intelli-
gence, 2015.

Dechter, E., Malmaud, J., Adams, R. P., and Tenenbaum,
J. B. Bootstrap learning via modular concept discovery. In
Twenty-Third International Joint Conference on Artificial
Intelligence, 2013.

Delaware, B., Pit-Claudel, C., Gross, J., and Chlipala, A.
Fiat: Deductive synthesis of abstract data types in a proof
assistant. Acm Sigplan Notices, 50(1):689–700, 2015.

Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare,
A., Marron, M., and Roy, S. Program synthesis using
natural language. In Proceedings of the 38th International
Conference on Software Engineering, pp. 345–356, 2016.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfill: Neural program learning
under noisy i/o. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 990–
998. JMLR. org, 2017.

Du, T., Inala, J. P., Pu, Y., Spielberg, A., Schulz, A., Rus,
D., Solar-Lezama, A., and Matusik, W. Inversecsg: Auto-
matic conversion of 3d models to csg trees. ACM Trans-
actions on Graphics (TOG), 37(6):1–16, 2018.

Dumancić, S. and Cropper, A. Inventing abstractions by
refactoring knowledge.

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum,
J. B. Learning to infer graphics programs from hand-
drawn images. arXiv preprint arXiv:1707.09627, 2017.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A.,
and Tenenbaum, J. Learning libraries of subroutines
for neurally–guided bayesian program induction. In Ad-
vances in Neural Information Processing Systems, pp.
7805–7815, 2018.

Ellis, K., Nye, M., Pu, Y., Sosa, F., Tenenbaum, J., and Solar-
Lezama, A. Write, execute, assess: Program synthesis
with a repl. arXiv preprint arXiv:1906.04604, 2019.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep bayesian program
learning. ArXiv preprint, 2020.

Fikes, R. E. and Nilsson, N. J. Strips: A new approach to
the application of theorem proving to problem solving.
Artificial intelligence, 2(3-4):189–208, 1971.

Fodor, J. A. The language of thought, volume 5. Harvard
university press, 1975.

Frank, M. C., Goodman, N. D., and Tenenbaum, J. B. Us-
ing speakers’ referential intentions to model early cross-
situational word learning. Psychological science, 20(5):
578–585, 2009.

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J.,
Ranzato, M., and Mikolov, T. Devise: A deep visual-
semantic embedding model. In Advances in neural infor-
mation processing systems, pp. 2121–2129, 2013.

Leveraging Language for Abstraction and Program Search

Gal, Y. and Blunsom, P. A systematic bayesian treatment
of the ibm alignment models. In Proceedings of the 2013
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 969–977, 2013.

Gandhi, K. and Lake, B. M. Mutual exclusivity as a
challenge for deep neural networks. arXiv preprint
arXiv:1906.10197, 2019.

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S. A., and
Vinyals, O. Synthesizing programs for images using rein-
forced adversarial learning. In International Conference
on Machine Learning, pp. 1666–1675. PMLR, 2018.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M.,
and Kagal, L. Explaining explanations: An overview of
interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced
analytics (DSAA), pp. 80–89. IEEE, 2018.

Goodman, N. D. and Frank, M. C. Pragmatic language inter-
pretation as probabilistic inference. Trends in cognitive
sciences, 20(11):818–829, 2016.

Goodman, N. D., Tenenbaum, J. B., and Gerstenberg, T.
Concepts in a probabilistic language of thought. Tech-
nical report, Center for Brains, Minds and Machines
(CBMM), 2014.

Goyal, P., Niekum, S., and Mooney, R. J. Pixl2r: Guiding
reinforcement learning using natural language by map-
ping pixels to rewards. arXiv preprint arXiv:2007.15543,
2020.

Grice, P. Studies in the Way of Words. Harvard University
Press, 1989.

Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggle-
ton, S. H., Schmid, U., and Zorn, B. Inductive program-
ming meets the real world. Communications of the ACM,
58(11):90–99, 2015.

Gulwani, S., Polozov, O., Singh, R., et al. Program synthesis.
Foundations and Trends® in Programming Languages, 4
(1-2):1–119, 2017.

Hawkins, R. X., Goodman, N. D., and Goldstone, R. L. The
emergence of social norms and conventions. Trends in
cognitive sciences, 23(2):158–169, 2019.

Jia, R. and Liang, P. Data recombination for neural semantic
parsing. arXiv preprint arXiv:1606.03622, 2016.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L.,
Lawrence Zitnick, C., and Girshick, R. Clevr: A diag-
nostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
2901–2910, 2017a.

Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman,
J., Fei-Fei, L., Lawrence Zitnick, C., and Girshick, R.
Inferring and executing programs for visual reasoning.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2989–2998, 2017b.

Johnson, M. Pcfg models of linguistic tree representations.
Computational Linguistics, 24(4):613–632, 1998.

Joshi, A. K. and Schabes, Y. Tree-adjoining grammars. In
Handbook of formal languages, pp. 69–123. Springer,
1997.

Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., and
Gulwani, S. Neural-guided deductive search for real-
time program synthesis from examples. arXiv preprint
arXiv:1804.01186, 2018.

Kim, Y., Dyer, C., and Rush, A. M. Compound probabilistic
context-free grammars for grammar induction. arXiv
preprint arXiv:1906.10225, 2019.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and brain sciences, 40, 2017.

Lake, B. M., Linzen, T., and Baroni, M. Human few-shot
learning of compositional instructions. arXiv preprint
arXiv:1901.04587, 2019.

Lau, T. A. and Weld, D. S. Programming by demonstration:
An inductive learning formulation. In Proceedings of the
4th international conference on Intelligent user interfaces,
pp. 145–152, 1998.

Lázaro-Gredilla, M., Lin, D., Guntupalli, J. S., and George,
D. Beyond imitation: Zero-shot task transfer on robots
by learning concepts as cognitive programs. Science
Robotics, 4(26), 2019.

Lee, K., Lewis, M., and Zettlemoyer, L. Global neural
ccg parsing with optimality guarantees. arXiv preprint
arXiv:1607.01432, 2016.

Liang, P. Learning executable semantic parsers for natural
language understanding. Communications of the ACM,
59(9):68–76, 2016.

Liang, P., Jordan, M. I., and Klein, D. Learning programs:
A hierarchical bayesian approach. In Proceedings of
the 27th International Conference on Machine Learning
(ICML-10), pp. 639–646, 2010.

Leveraging Language for Abstraction and Program Search

Liang, W., Zou, J., and Yu, Z. Alice: Active learning with
contrastive natural language explanations. arXiv preprint
arXiv:2009.10259, 2020.

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., and Mug-
gleton, S. H. Bias reformulation for one-shot function
induction. 2014.

Luketina, J., Nardelli, N., Farquhar, G., Foerster, J., Andreas,
J., Grefenstette, E., Whiteson, S., and Rocktäschel, T. A
survey of reinforcement learning informed by natural
language. arXiv preprint arXiv:1906.03926, 2019.

Lupyan, G. and Zettersten, M. Does vocabulary help struc-
ture the mind? 2020.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. arXiv
preprint arXiv:1904.12584, 2019.

Margolis, E., Laurence, S., et al. Concepts: core readings.
Mit Press, 1999.

Markman, E. M. and Wachtel, G. F. Children’s use of mutual
exclusivity to constrain the meanings of words. Cognitive
psychology, 20(2):121–157, 1988.

Marzoev, A., Madden, S., Kaashoek, M. F., Cafarella, M.,
and Andreas, J. Unnatural language processing: Bridg-
ing the gap between synthetic and natural language data.
arXiv preprint arXiv:2004.13645, 2020.

Mu, J., Liang, P., and Goodman, N. Shaping visual represen-
tations with language for few-shot classification. arXiv
preprint arXiv:1911.02683, 2019.

Nye, M., Hewitt, L., Tenenbaum, J., and Solar-Lezama,
A. Learning to infer program sketches. arXiv preprint
arXiv:1902.06349, 2019.

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D.,
and Kohli, P. Neuro-symbolic program synthesis. arXiv
preprint arXiv:1611.01855, 2016.

Polosukhin, I. and Skidanov, A. Neural program search:
Solving data processing tasks from description and exam-
ples. 2018.

Polozov, O. and Gulwani, S. Flashmeta: a framework
for inductive program synthesis. In Proceedings of the
2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations, pp. 107–126, 2015.

Portner, P. H. and Partee, B. H. Formal semantics: The
essential readings, volume 7. John Wiley & Sons, 2008.

Pyers, J. E., Shusterman, A., Senghas, A., Spelke, E. S.,
and Emmorey, K. Evidence from an emerging sign lan-
guage reveals that language supports spatial cognition.
Proceedings of the National Academy of Sciences, 107
(27):12116–12120, 2010.

Rule, J. S. The child as hacker: building more human-like
models of learning. PhD thesis, Massachusetts Institute
of Technology, 2020.

Shin, E. C., Allamanis, M., Brockschmidt, M., and Polo-
zov, A. Program synthesis and semantic parsing with
learned code idioms. In Advances in Neural Information
Processing Systems, pp. 10824–10834, 2019.

Shin, R., Polosukhin, I., and Song, D. Improving neural
program synthesis with inferred execution traces. In
NeurIPS, pp. 8931–8940, 2018.

Si, X., Yang, Y., Dai, H., Naik, M., and Song, L. Learning
a meta-solver for syntax-guided program synthesis. In
International Conference on Learning Representations,
2019.

Silver, T., Allen, K. R., Lew, A. K., Kaelbling, L. P., and
Tenenbaum, J. Few-shot bayesian imitation learning with
logical program policies. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pp. 10251–
10258, 2020.

Smith, K., Brighton, H., and Kirby, S. Complex systems
in language evolution: the cultural emergence of compo-
sitional structure. Advances in Complex Systems, 6(04):
537–558, 2003.

Spelke, E. S. Core knowledge, language, and number. Lan-
guage Learning and Development, 13(2):147–170, 2017.

Srivastava, S., Labutov, I., and Mitchell, T. Joint concept
learning and semantic parsing from natural language ex-
planations. In Proceedings of the 2017 conference on
empirical methods in natural language processing, pp.
1527–1536, 2017.

Tian, L. Y., Ellis, K., Kryven, M., and Tenenbaum, J. B.
Learning abstract structure for drawing by efficient motor
program induction. arXiv preprint arXiv:2008.03519,
2020.

Wiseman, S., Shieber, S. M., and Rush, A. M. Learn-
ing neural templates for text generation. arXiv preprint
arXiv:1808.10122, 2018.

Wong, Y. W. and Mooney, R. Learning synchronous gram-
mars for semantic parsing with lambda calculus. In Pro-
ceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pp. 960–967, 2007.

Leveraging Language for Abstraction and Program Search

Ye, X., Chen, Q., Dillig, I., and Durrett, G. Benchmark-
ing multimodal regex synthesis with complex structures.
arXiv preprint arXiv:2005.00663, 2020a.

Ye, X., Chen, Q., Dillig, I., and Durrett, G. Optimal neural
program synthesis from multimodal specifications. arXiv
preprint arXiv:2010.01678, 2020b.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenen-
baum, J. Neural-symbolic vqa: Disentangling reasoning
from vision and language understanding. In Advances in
Neural Information Processing Systems, pp. 1031–1042,
2018.

Zhang, Y., Pasupat, P., and Liang, P. Macro grammars and
holistic triggering for efficient semantic parsing. arXiv
preprint arXiv:1707.07806, 2017.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplemental: Leveraging Language for Abstraction and Program Search

This contains the supplemental appendix to the 2021 submission. It is organized sequentially in reference to the main text;
S{N} refers back to section N in the main text.
A complete release of code for our implementation, including command line scripts to replicate the experiments in the paper
and links to the datasets, can be found at: https://bit.ly/2LMTu1G. (This is an anonymized GitHub repo, and will
be replaced with a deanonymized repository after the review period.)

S4. Base learning algorithm: DreamCoder

The LAPS framework described in the main paper is a gen-
eral one (Sec. 4) for extending Bayesian models of program
learning to incorporate information from natural language
(see (Liang et al., 2010; Lake et al., 2015; Dechter et al.,
2013; Lake et al., 2013)). Our concrete implementation and
experiments use the DreamCoder approach of (Ellis et al.,
2020; 2018) as the base synthesis algorithm, which imple-
ments the hierarchical Bayesian formulation of program
learning. It defines a modular interface with two primary
learning components: a learned conditional inference model
for search (as a neural search heuristic); and a learned ab-

straction algorithm for updating the program prior (based
on program refactoring and compression) (Ellis et al., 2020).
Each of these learning components has been additionally
implemented in other work (such as (Devlin et al., 2017;
Polosukhin & Skidanov, 2018; Nye et al., 2019; Parisotto
et al., 2016; Balog et al., 2016) for neurally guided synthesis,
and (Dechter et al., 2013; Zhang et al., 2017; Shin et al.,
2019; Artzi et al., 2014; Dumancić & Cropper) for program
abstraction learning).

This supplementary section provides theoretical and imple-
mentation details on the DreamCoder algorithm we use in
our experiments. We match our implementation as closely
as possible to the original work for comparison with pub-
lished baselines. We provide key details relevant to the
language-guided extension, but strongly recommend the
original works which introduce the DreamCoder algorithm
(Ellis et al., 2020; 2018) for further reference.

S4.1 Program prior and MDL equivalence

Hierarchical Bayesian program learning formulations re-
quire a prior over expressible programs. DreamCoder is
learned iteratively: it is initialized with a base library L0

and returns a library Lf containing program abstractions
learned from solving training tasks. Therefore, Dream-
Coder defines its program prior with respect to the cur-
rent library Li maintained at each iteartion. This is pa-
rameterized as a simple PCFG P[⇢|L, ✓] whose produc-

tions are of the form li ! lj 2 L, each with a real-valued
weight ✓l, where the probability of a program ⇢ is given by
P [⇢|L, ✓] =

Q
l2⇢ P [l|L, ✓] (Sec. 4.1).

Minor complexity arises in order to support typing (Pierce,
2002): following (Ellis et al., 2018), the library Li is im-
plemented as a set of polymorphically typed �-calculus
expressions. The only change this produces to the original
prior definition is to restrict the set of possible productions
under the PCFG: that is, permissible productions are of the
form li ! lj 2 {L|li ! lj is well typed}. The prior proba-
bilities of programs are therefore calculated with respect to
the set of well-typed productions.

As discussed in the main paper, this prior definition is equiv-

alent to a minimum description-length prior over programs

under (L, ✓) when all ✓ < 1.0, as the product of additional
productions in an expression will strictly decrease as the
number of productions in an expression increases.

S4.2 Amortized conditional inference

Figure 1. Architecture of the neural model Qi(⇢|t,Li). The model
takes as input task examples t. These are encoded using a domain-
specific encoder E(t). Task encodings feed to an MLP and activa-
tion layer and output a tensor Q. This parameterizes a distribution
over program bigrams in the final DSL, which defines a conditional
distribution from which to enumerate programs during search.

To identify programs that solve tasks t while obtaining high
probability under P [⇢|L, ✓], DreamCoder trains a neural
search heuristic Qi(⇢|t,Li) at each iteration i to approxi-
mate the inverse model.

The training procedure in (Ellis et al., 2020) (summarized in
Sec. 4.2) is a key contribution of the original work for learn-
ing in the distant supervision setting. The model is trained
on samples from the generative prior (providing an endless
training stream of random synthesis tasks); and this proce-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Supplemental: Leveraging Language for Abstraction and Program Search

dure should generalize immediately to any neural model for
predicting programs conditioned on the task specification
(e.g. (Devlin et al., 2017; Polosukhin & Skidanov, 2018;
Nye et al., 2019; Parisotto et al., 2016; Balog et al., 2016)).
The model is also supervised on any original training task
examples and their program solutions discovered during
learning.

In our experiments we use the baseline neural model archi-
tecture in (Ellis et al., 2020). This is parameterized by two
modular components:

1. A domain-specific task encoder E(t). This encodes the
task examples (e.g. images in the graphics program do-
main, or input-output strings in the text editing domain)
that are input to the neural model. This task encoder ar-
chitecture is defined domain-specifically based on the
form of the task examples (e.g. a CNN for the graphics
domain). It outputs a fixed dimensional embedding for
any given task as input to the model. In our experi-
ments this is a 64-dimensional embedding across all
domains (See S6.1 for domain-specific architectures;
and released code.)

2. A conditional model over programs Q(⇢|E(t)). This
component receives the task encoding as input and
outputs a distribution over programs. Following (Ellis
et al., 2020), this is a 2-layer fully-connected MLP
(with 64 hidden units and a final tanh activation layer)
that outputs a fixed-dimensional real-valued tensor en-
coding a distribution over programs in the library L as
output. The real-valued tensor corresponds to weights
over program primitives conditioned on their local con-
text in the syntax tree of the program, consisting of the
parent node in the syntax tree and which argument is
being generated. This functions as a ‘bigram transition
model’ over trees that encodes the likelihood of transi-
tions from one primitive to the next. Q returns this as a
(|L|+ 1)⇥ (|L|+ 2)⇥A-dimensional tensor, where
A is the maximum arity of any primitive in the library.

This parameterization supports fast sampling of programs
during conditional synthesis: the neural model runs once per
task (to encode the task examples and produce the bigram
transition model) and the resulting parameterization can
then be used to sample programs during synthesis (e.g. by
enumerating programs by expanding trees (as ‘bigrams’
over parent and children primitives) ranked in order of their
likelihood starting from the program root.)

Following (Ellis et al., 2020), the neural model is trained
to optimize the following MAP inference objective on the
training tasks and the sampled tasks from the prior:

L
MAP=Ex⇠(L,✓)

2

4logQ

0

@argmax⇢ P[⇢|x,L,✓]

���� x
1

A

3

5(1)

S4.3 Abstraction learning as program compression

DreamCoder learns new abstractions to approximately opti-
mize for Eq. 2 (main paper), which infers an optimal library
and parameters with respect to the observed programs on
the training tasks.

The DreamCoder abstraction algorithm is a primary con-
tribution of the original work in (Ellis et al., 2020), and is
discussed extensively in (Ellis et al., 2020). We therefore
provide additional technical details here that are relevant to
its integration with LAPS in our experiments, but strongly
encourage referencing (Ellis et al., 2020) for the full imple-
mentation.

As discussed in (Ellis et al., 2020) and our main work,
DreamCoder approaches abstraction using an equivalence
between Eq. 2 and the minimum description length of the
prior (as the description length of the library) and the pro-

grams produced from the prior (under the PCFG definition
of the prior). Therefore, in practice, inferring the optimal li-
brary is equivalent to inferring the library which maximally
compresses the description length of the library and the
description length of programs which explain the training
tasks. In particular, DreamCoder optimizes the following
compression objective with respect to the training tasks T
and the finite beam Bt of program solutions discovered for
each training task during learning:

log P[L] + argmax
✓

X

t2T

log
X

⇢2Bt

P[t|⇢] max
⇢0⇢

P[⇢0|L, ✓]

+ log P[✓|L]� |✓|0 (2)

The key aspect of this algorithm is that it considers abstrac-
tions which compress not only the programs as they are cur-

rently written, but any semantically equivalent refactorings

of these programs. Specifically, as programs are written in a
�-calculus, refactoring refers to any program which is equiv-
alent up to �-reduction (i.e., function application/variable
substitution (Pierce, 2002)). A primary contribution of the
original work in (Ellis et al., 2020) is an efficient algorithm
for computing these refactorings that is unchanged when we
integrate language; we refer to the original text for details.

In our work, the primary important aspect of this aspect is
that refactorings are defined compositionally over the ex-
isting program primitives. Specifically, refactorings can be
efficiently calculated according to semantic equivalences
in the the �-calculus (namely, that function application and
variable substitution guarantee that the resulting refactored
programs are equivalent. Abstractions created by variable
substitution will always be composed of subcomponents
from the initial library.) We take advantage of this composi-
tionality when defining our joint abstraction algorithm over
natural language. Defining an initial compositional transla-
tion model between language and the program components

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Supplemental: Leveraging Language for Abstraction and Program Search

ensures that we can approximate compression in the joint
model after the programs are refactored, without needing to
induce an entirely new translation model over language and
the refactored programs.

S5. Our Approach: Language for Abstraction

and Program Search

This section now describes technical details for the concrete
LAPS implementation in our reported experiments, which
is defined over the DreamCoder implementation. We struc-
ture this section according to the parallel implementations
in the base algorithm for clarity. However, except for the
specifics of the joint-abstraction algorithm, the technical
implementation of each component should extend directly
to most other similar learned synthesis algorithms (e.g. the
joint model implementation should be reusable in any syn-
thesis algorithm that uses an explicit symbolic library of
primitives.)

S5.1 Joint prior over programs and language

LAPS extends the prior P[⇢] over programs under the li-
brary to a joint prior J(⇢, d) over programs for a given task
and their natural language descriptions d (Sec. 5.1). We
formulate this prior as

J(⇢, d) = P [⇢|L, ✓]T (d|⇢,L)

the product of the original prior over programs P [⇢|L, ✓] de-
fined on the program library, and a program to descriptions

“translation” model T (d|⇢,L) that describes how descrip-
tions are generated for programs written in the library.

The concrete implementation described in the main paper
uses a translation model that additionally decomposes com-
positionally over language and programs–in particular, on
the basis of token-token translation distributions t(d|l) be-
tween words d 2 D and l 2 L. Many available translation
and semantic parsing models (such as synchronous gram-
mars over natural language and programs) preserve this
further compositional requirement (e.g. (Artzi et al., 2014;
Wong & Mooney, 2006)).

See Figure 3 for example samples from the generative model
on the graphics domain at earlier and later stages of training.

Our implementation uses a classical statistical machine
translation model (the Model 4 version of the IBM Statis-
tical Machine Translation models (Gal & Blunsom, 2013))
whose parameters can be tractably estimated from very few
paired programs and descriptions (in the distant supervision
setting used in the original work, there may be no more
than a couple of hundred training tasks in the full dataset,
and fewer than 10 solved tasks on which to train the trans-
lation model at any given time.) In addition to inference

in small data settings, this translation model has a fully
compositional generative definition (Gal & Blunsom, 2013)
that allows it to be easily used to train the neural amortized
inference model which conditions on language.

Despite this, however, this translation model (and the further
inductive biases used to specifically relate program trees to
sentences) make strong compositonality assumptions about
the relationship between program primitives and words as
a joint generative model of programs and language; we
find that these inductive biases are useful in the small data
setting and produce empirically successful results. However,
this is likely because of how the joint model is used during
training, which does not require a perfect generative model
of language (or language with respect to programs) for either
amortizing inference or abstraction in order to use language
as a heuristic during learning.

A full definition of the statistical translation model we use
can be found in (Gal & Blunsom, 2013). We re-summarize
important details here. The IBM family of translation mod-
els estimates the conditional token-token probabilities t(d|l)
on the basis of alignment variables al,d, which specify a
direct correspondence between tokens in parallel texts (e.g.
a word in a task description and a program primitive.) These
alignments are many:many between tokens in programs and
natural language sentences – a given word can correspond
to multiple primitives, and vice versa. Conditioned on a set
of alignments from paired programs and descriptions, the
conditional probabilities in both directions (the probability
of generating a program primitive in a program based on
the presence of a word in a sentence, and vice versa) are
defined by marginalizing over the alignment variables. We
provide one direction (p(d|l)), as the other is symmetrical:

p(d|l) /
X

a1

...
X

am

p(d, a1...am|l) /
mY

i=1

q(ai|i, l,m)

where ai are alignment variables inferred over a paired cor-
pus and q(j|i, l,m) can be interpreted as the probability
of alignment variable ai (for the token with index i in a
program) taking value j (where j is an index into the corre-
sponding sentence) conditioned on the lengths l and m of
the program and natural language sentence (Gal & Blunsom,
2013).

These alignments are inferred by approximately inverting
the generative model in (Gal & Blunsom, 2013) to maxi-
mize the likelihood of the observed paired sentences and
programs. One implementation detail: the alignment algo-
rithm operates over pairs of strings. For convenience we
infer alignments between sentences and linearized token
sequences in the program tree (which can be done with com-
plete recoverability of the original program tree (Andreas
et al., 2013)). This is another inductive assumption that we
choose after preliminary experimentation and find that our

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Supplemental: Leveraging Language for Abstraction and Program Search

implementation yields strong empirical results regardless.

The IBM translation model is a noisy-channel generative
model that requires an additional language model p(d) to
generate language (Gal & Blunsom, 2013; Heafield, 2011).
We use an efficient parallelized implementation for inferring
the translation model parameters from (Koehn et al., 2007),
which also contains a basic language model inference
algorithm inferred over the full corpus of training task
sentences (as a trigram model, which we again find simple
but effective for our very small data setting). Specific model
hyperparameters for all experiments are available in the
released code repo (in the experiment runtime commands.)

Mutual exclusivity: Section 5.1 of the main paper also
describes how the joint model can be modified to include
language-specific priors, such as a simple implementation
of the well-known mutual exclusivity prior documented
in the cognitive language-learning literature (Markman &
Wachtel, 1988; Gandhi & Lake, 2019) and given a Bayesian
formulation in (Frank et al., 2009). We provide an imple-
mentation to demonstrate that the joint model can be easily
extended: specifically, a simple mutual exclusivity assump-
tion can be added into the joint model by simply updating
the compositional translation model to include additional
distributions tME(dnew|l) where dnew are words that only

appear in unsolved training tasks and

tME(dnew|l) / ↵P (l|L, ✓L)�1

new words are now assumed to correspond to primitives in-

versely proportional to their current usage under the learned
program prior. As we show in the next section, incorporat-
ing this prior at the level of the joint model can be used to
approximate mutual exclusivity assumptions in the learned
search heuristic, encouraging exploration in the presence of
new words.

Practically, we calculate the mutual exclusivity prior in our
concrete implementation by leveraging the alignments upon
which our token-token translation probabilities are defined.
Specifically, we add pseudoalignments between each dnew
and each l / ↵P (l|L, ✓L)�1; when the token-token trans-
lation probabilities marginalize over the latent alignments
and these pseudo alignments, the resulting translation prob-
abilities encode the mutual exclusivity prior.

S5.2 Integrating the joint model into amortized

conditional search

The amortized conditional inference model Q(⇢|t) (Sec.
4.2) extends straightforwardly in LAPS to condition on lan-
guage Q(⇢|d, t) (Sec. 5.2). Importantly, the training proce-
dure in Sec. 4.2 (training the neural model on samples from
the prior) also extends to the language-enriched condition
(training the neural model on samples from the joint prior,

Figure 2. Architecture of the language-conditioned neural model
Q(⇢|d, t). The model takes as input task examples t. These are
encoded using a domain-specific encoder E(t). The model ad-
ditionally takes in task descriptions d, encoded using a languag
encoder ED(t) (implemented as a GRU). Task encodings are con-
catendated and feed to an MLP and activation layer and output a
tensor Q. This parameterizes a distribution over program bigrams
in the final DSL, which defines a conditional distribution from
which to enumerate programs during search.

which include generated language annotations.)

In our experiments we implement the concrete neural model
Q(⇢|d, t) in our experiments by extending modularly on the
original model in (Ellis et al., 2020) (and in the supplemental
S4.2) for direct comparison. Our full architecture therefore
has three modular components to additionally condition on
language:

1. A natural language task descriptions encoder ED(d).
This receives the task description d as input. We imple-
ment this as an RNN model using a bidirectional GRU
(Cho et al., 2014) with 64 hidden units; we embed
natural language symbols as 64-dimensional vectors,
and randomly initialize and backpropagate through the
embedding during training. We tokenize the sentences
in u on whitespace and concatenate each sentence, de-
limited by special start and end of sentence tokens. At
test time, we replace any OOV tokens with a special
UNK token.

2. A domain-specific task encoder E(t), following S4.2.

3. A bigram transition model over program primitives,
following S4.2. To condition jointly on ED(d) and
E(t) we simply concatenate these two embeddings
and update the first layer of the MLP to take the 128-
dimensional concatenated embeddings as input.

5.3 Abstraction learning as joint model compression

Finally, the abstraction learning model in (Ellis et al., 2020)
can also be generalized to condition on language, by extend-
ing the optimal library inference algorithm with respect to
the program prior to an optimal library inference algorithm
with respect to the joint model over language and programs
(Eq. 6 and 7, main text.)

In our concrete implementation with respect to the Dream-
Coder algorithm, this means extending the description-

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Supplemental: Leveraging Language for Abstraction and Program Search

length compression objective – originally defined over the
program library and training task programs – to include
the translation model definition. The main paper defines a
description-length prior over the compositional translation
model (Eq. 10). Optimizing this tractably requires redefin-
ing the abstraction algorithm in (Ellis et al., 2020) – which
refactors �-calculus programs via lambda-abstraction (see
S4.3 for a summary) – to also jointly re-estimate the de-
scription length of the translation model |T (D|L0)| using
the refactored programs under the new candidate library L0.

We implement an efficient approximation that can be cal-
culated with respect to the classical statistical translation
model described in S4.1 (Gal & Blunsom, 2013). In particu-
lar, we leverage the alignment-based definition (which uses
latent correspondences inferred between program tokens
and sentence tokens in paired programs and descriptions) to
approximate �log(t(d|l)), the entropy of the token-token
translation probabilities.

Specifically, as the IBM model defines the conditional token-
token probabilities

t(d|l) /
X

a1

...
X

am

p(d, a1...am|l)

marginalized over alignments, where (slightly abusing nota-
tion) in any given paired program and sentence description
we will have estimated a set of alignments adj ,lk...ln be-
tween the j-th token in the program corresponding to one
or more tokens lk...ln in the paired program. We therefore
define the description-length of each token-token transla-
tion as the sum of the description lengths of the alignments
which express it under a library L:

X

ai

...
X

am

p(d, a1...am|l,L) /
X

a1

...
X

am

|ai|L

and the description lengths under the refactored library L0

containing new abstractions compresses according to

|a0dj ,l0k...l
0
n
|L0 < |a0dj ,lk...ln |L ()

{l0icontains only lk...ln as subcomponents|l0k...l0n}
(3)

and we say that a primitive l 2 L is a subcomponent of
a refactored abstraction l 2 L if the abstraction can be
�-reduced such that l appears in it. That is, a refactored
alignment a0 : wi ! {l0...ln} is compressed only when a
new abstraction l0 encapsulates over a strict subset of the
constituent program primitives already aligned to the word
in the original alignment. This allows us to re-approximate
the description length of the new translation model with
respect to a semantically-equivalent program refactoring
without inducing t(d|l) from scratch (which would require
retraining the full translation model over the sentences and
refactored programs.)

S6. Experiments

This section describes additional details on each of the do-
mains – string editing, compositional graphics, and scene

understanding – in Section 6 of the main paper (see Figure

3, main text for examples from all three domains, shown
along with the synthetic and human language annotations).
We also provide additional details on the model and baseline
hyperparameters available for each domain. All datasets
generated for these experiments (including human language
annotations) are released and links to static repositories are
provided in the code release. We also release a complete set
of commands to exactly replicate all model experiments.

All experiments for were conducted on a high-powered com-
puting cluster using a fixed training budget of wall-clock
search time per task for all models and baselines in a given
domain (determined via hyperparameter search using the
baseline model per domain, and reported on a per-domain
basis below). The experiments on the string editing and
graphics domains used models trained using 48 CPUs for
search (using the original parallel enumerative search imple-
mented in the released code for the DreamCoder model in
(Ellis et al., 2020)); and the experiments trained on the scene
reasoning task used 24 CPUs (as preliminary experiments
revealed that these experiments required shorter search time
for our main model, and we wished to reduce the carbon
footprint of the remaining experiments after our first two
domains.)

For all experiments we train the neural models for 1 ⇥104

gradient steps. For experiments with language-guided com-
pression, we use an upper bound of 5 new abstractions in-
troduced per iteration. For mutual exclusivity experiments,
we set ↵ME = 0.1. For all experiments, during program-
only compression (see (Ellis et al., 2020) for a discussion
of program-only compression hyperparameters) we use the
hyperparameters from (Ellis et al., 2020) for parsimony with
earlier work: a structure penalty of 1.5 and pseudocounts =
30.

S6.1 Domains

(See Figure 2, main text for examples from all three do-
mains, shown along with the synthetic and human language
annotations.) As discussed in the main paper, each domain
consists of a dataset of tasks; a set of procedurally generated
synthetic language annotations; and a set of human lan-

guage annotations provided by Mechanical Turk workers;
we also described the base primitives L0 with which all
models (including baselines and ablations) were initialized
for each domain.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Supplemental: Leveraging Language for Abstraction and Program Search

S6.1.1 STRING EDITING

Tasks: structured string transformation problems taken
from a publicly released dataset in (Andreas et al., 2017)
(n=1000 train; n=500 test). Tasks consist of input dictio-
nary strings transformed using randomly sampled regular
expression transducer (n=30 examples per task). Transduc-
ers were sampled according to abstract templates defined
in (Andreas et al., 2017) and required identifying matched
sequences of characters and adding letters before them; re-

moving sequences; replacing them with new sequences, or
doubling the sequence each time they appeared (See Figure

2A, main text).

Language data: The human language dataset for this do-
main was previously collected by (Andreas et al., 2017). We
defined a synthetic grammar of high-level templates over the
ground truth regular expression transducers (corresponding
to the original templates used to generate the tasks.) The
synthetic templates were defined based on language from
the original human annotations, and in most cases closely
matched the true human provided annotations (which were
generally quite structured), though with significantly less
variation (the original language contained multiple human
descriptions per task. We generate a single synthetic for
each one. The synthetic dataset has a vocabulary size of
n=44 for both train and test. We use the human annota-
tions in the original dataset when evaluating on human data,
which have a vocabulary of n=727 (train) and n=622 (test).)
We generate a synthetic dataset on this domain partly be-
cause of inaccuracies noted in (Andreas et al., 2017). The
released code contains the complete generation procedure
for these synthetic annotations. See Figure 2A for represen-
tative tasks with examples, synthetic language, and human
descriptions.

Initial program primitives: We initialize all models with
a set L0 of LISP-like primitives that operate over substring
sequences to both construct regular expression match se-
quences and manipulate strings, augmented with three text
manipulation-specific primitives intended for executing con-
structed regular expression sequences; t is a polymorphic
type variable using standard Hindley-Milner polymorphism
typing (Pierce, 2002). The execution engine does include
a regex-matching model; however, the synthesis model is
naive to this execution engine and simply searches for ma-
nipulations over the input strings and the regexes as data
arrays.

L0 contains 14 substring manipulation primitives, given
below with type information. We also give a semantic gloss
for primitives that are not standard LISP primitives.

• if (bool ! t ! t ! t)

• cons (t ! list(t) ! list(t))

• car (list(t) ! t)

• cdr list(t) ! list(t

• map ((t0 ! t1) ! list(t0) ! list(t1))

• tail (list(t) ! t)

• append (t ! list(t) ! list(t))
Appends element to end of list.

• revcdr (list(t) ! list(t))
Takes all except the last element of the list.

• match (substr ! substr ! bool)
Returns true if the first argument, when executed as a
regular expression, matches the second argument.

• regexsplit (substr ! fullstr !
list(substr))
Attempts to execute the first argument as a regular
expression, and splits the second argument into a list
of substrings, using the regular expression match as a
delimiter (and includes the matched sequences in the
returned list.)

• flatten (list(substr) ! fullstr)
Flattens a list of substrings back into a string.

• rconcat (substr ! substr ! substr)
Concatenates two substrings.

• rnot (substr ! substr)
Takes a substring argument s and returns the substring
literal [ˆ s]

• ror (substr ! substr ! substr)
Takes substring literals a and b and returns the substring
literal ((a)—(b))

We also include 26 character constants of type substr and
constants dot (regular expression wildcard character) and
empty (empty string).

Domain hyperparameters We largely follow prior work
(Ellis et al., 2020) to set algorithm training parameters; the
earlier (Ellis et al., 2020) uses a 720s enumerative search
budget for solving both text editing and general list manip-
ulation tasks. We use the same 720s enumerative budget
here.

S6.1.2 COMPOSITIONAL GRAPHICS

Tasks: inverse graphics problems (n=200 train; n=111 test)
where each synthesis problem is specified by an image and
solved by synthesizing a program in LOGO Turtle graph-
ics (Abelson & DiSessa, 1986). The domain is inspired by
the graphics domain in (Ellis et al., 2020) but intentionally

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Supplemental: Leveraging Language for Abstraction and Program Search

re-designed to be much more challenging (ground-truth pro-
grams are much longer on average in the base programming
language) and explicitly compositional: the training and
testing tasks contain simple shape tasks defined by composi-
tional parameters for a set of basic shapes (a small triangle,

a medium square; a small semicircle); complex shape tasks

that require inferring more challenging (and longer) param-
eterized shapes (a greek spiral with eight turns); and compo-

sitional tasks defined by geometric rules and relations over
the simple shapes (a seven sided snowflake with a short line

and a small triangle as arms; a small triangle connected by

a big space from a small circle) (See Figure 2C).

Simple parameterized shapes are either polygons (triangle,

square, [n] gon), curves (semicircle, circle) or lines. Simple
shapes are parameterized by one of three sizes (small or
short; medium; and big). When generating synthetic lan-
guage descriptions, pluralized objects are tokenized with
separate tokens for the noun lemma and a token for the plu-
ral suffix (e.g. square s).
Complex parameterized shapes require constructing more
complex images out of basic lines, and are intended to evalu-
ate performance on tasks that pose a greater search challenge
in the initial DSL, and whose structure is not directly cued
by compositional relationships over easier components. Fur-
ther, the complex shapes can be solved using abstractions
(e.g. for repeatedly rotating a pen at right angles) that are
not directly cued by shared lexical names – we evaluate the
algorithm’s ability to learn and use abstractions that corre-
spond to useful sublexical structures shared across multiple
lexemes. We define four template families for complex
shapes: spirals, staircases, zigzags, and stars.
Compositional graphics tasks invoke compositional rela-
tionships over the simple parameterized shapes. We define
templates for generating 6 families of compositional tasks:
nested, next to, separated by, connected by, in a row, and
snowflakes.

Language data: We gather human language annotations
by asking Mechanical Turk workers to write an image de-
scription for the rendered graphics images that specify each
task. Each worker labeled 20 training and 10 testing images
after viewing a disjoint, randomly sampled set of 15 exam-
ple images paired with their synthetic language captions.
(Workers were asked to write a short, clear description that

a person or robot could use to recreate the picture, and
told that the examples were paired with automatically gen-

erated captions as an example of the kinds of descriptions

you could write for this picture.) We control for description
quality by requiring workers to complete a reference task on
their own descriptions: after writing their initial annotations,
workers were required to correctly match each annotation to
the target image (from amidst a set of 12 distractors drawn
heuristically from similar images on the full task dataset,
and other images they themselves had described), and only

annotations correctly matched to the target image were re-
tained (workers were given a chance to redescribe pictures
they failed to match to their own captions.) We preprocess
the human dataset minimally to standardize number terms
(e.g. we use the same token type for both 3 and three) and
to split plurals into a lemma and suffix, as in the synthetic
dataset. The final dataset has a vocabulary size of n=562 for
both train and test.

As with the string editing domain, we define a synthetic
dataset using parameterized templates based on systematic
language reused in the human annotations (see Figure 2A for
a comparison between human annotations and synthetic lan-
guage); as with that domain, we choose a synthetic dataset
to ensure systematic re-use of high level terms for repeated
compositional objects (such as the ”n-gon” or ”snowflake”
terminology.)

We then generate graphics tasks by defining parameterized
templates over ground truth programs in L0, and a corre-
sponding generator for synthesizing natural language de-
scriptions based on each ground truth program. It is impor-
tant to note that the templates are defined at any extremely
high level and were written with respect to low-level pro-
grams in a simple graphics language (many of which were
derived by generalizing compositionally over complex struc-
tures in (Ellis et al., 2020), such as the ’snowflake’ images).

Initial program primitives: For comparison with prior
work, our initial library on this domain (and the base lan-
guage used to generate the ground truth graphics programs)
is an implementation of the LOGO Graphics DSL used
in (?), which consists of four typed, imperative primitives
modeled within the ��calculus with a state monad S:

move: distance ! angle ! S ! S
pen-up: (S ! S) ! S ! S
for: int ! (S ! S) ! S ! S
get/set: (S ! S) ! S ! S

as well as four arithmetic operators (+, -, *. /), integer
constants (1-9), unit distances and angles (1 meter and 2⇡
radians), and special values 1 and ✏.

Figure 3 (main text) shows examples of the graphics tasks,
synthetic descriptions, human descriptions, and sample pro-
grams in the ground truth initial DSL.

Domain hyperparameters We largely follow prior work
(Ellis et al., 2020) to set algorithm training parameters. Con-
sistent with the graphics program experiments in (Ellis et al.,
2020), we train all models, including baselines and abla-
tions, using an enumerative search budget of 1800s per task
(both when using pure enumerative search from the DSL
prior, and neurally-guided search conditioned on the task
examples and language descriptions); the results in Table

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Supplemental: Leveraging Language for Abstraction and Program Search

1 compare the relative advantage of our model given this
fixed search time. We train all models on 48 CPUs dur-
ing parallel enumerative search, and run the algorithm for
a maximum of 27 iterations (see learning curves. As we
run multiple random seed replications of models in this do-
main, we tuned the iteration limit based on performance on
the first replication, allowing models models to train while
performance continued to increase. To conserve computa-
tional resources, we later stopped several of our own model
replications before 27 iterations, as they had reached near
ceiling performance. As we report the best held-out test
score across all 27 iterations for any one model, the early
stopping would only serve to give a conservative estimate
on performance for these models.) We randomly reorder the
training set of tasks once before the first loop, then iterate
through batches of n=40 tasks at each iteration; learning
curves show results from evaluating on held-out tasks every
n=3 iterations.

S6.1.3 SCENE REASONING

Tasks: inductive scene reasoning tasks (n= 212 train; n=115
test) where each synthesis problem is specified by a struc-
tured input scene, and outputs can be a number (how many

red rubber things are there?), a boolean value (are there

more blue things than green things?), or another scene (what

if all of the red things turned blue?). This domain is modeled
on CLEVR (Johnson et al., 2017) but designed to support
non-linguistic, inductive synthesis in the programming-by-
example paradigm: each task is specified with n=7 paired
input output examples. See Figure 3B, main text for exam-
ple tasks showcasing the original and extended templates,
synthetic language annotations, and human language anno-
tations.

The dataset includes questions randomly generated from the
following subset of the original CLEVR question templates

(see (Johnson et al., 2017) for additional details on the task
generation process and question templates; we also release
our own augmented question generation code and the full
dataset):

• zero hop: questions that require counting or answer-
ing an attribute query about a subset of objects in the
scene. (e.g. How many small cylinders are there?;
What material is the purple thing?).

• one hop: questions similar to the zero hop tasks, but
that require reasoning over an additional relational
query (e.g What number of things are right the small

gray thing?).

• single or: questions that additionally introduce a dis-

junction between sets of objects. (e.g. How many

objects are either large metal spheres or large rubber

things?)).

• (compare integer: questions that additionally intro-
duce a � or operator between counts of sets of ob-
jects. (e.g. Is the number of large rubber cubes less

than the number of large green rubber things?)

• same relate: questions that additionally require rea-
soning about other objects with the same attribute as
a specified object. (e.g. How many other things are

there of the same size as the cyan thing?).

We choose these templates as a representative subset of
the style of the full CLEVR dataset, that requires the full
language of high-level primitives in (Johnson et al., 2017)
to solve. We omit some longer questions in the same format
(e.g. two hop) as our intention is to compare synthesis
baselines, rather than to achieve SOTA performance on
CLEVR: this would likely only increase the computing
resources needed to compare the various methods and we
already found a significant differential between our model
and the baselines on the shorter questions.)

We also add new question templates generated in the style
of the original CLEVR tasks, but designed to model other
common AI tasks (such as generating new scenes based on
existing ones) and to require new abstractions (that were
not expressible in the original restricted symbolic language
used to generate scenes in (Johnson et al., 2017)):

• localization: questions for object localization. These
return an output scene consisting of a localized set of
objects based on a set of query attributes (e.g. Find the

gray rubber thing.).

• remove: questions that either return an output scene

with a subset of the objects removed, or that query
about latent scenes where a subset of objects has bee
removed. (e.g What if you removed all of the gray

metal things?; If you removed the green cubes, how

many cubes would be left?).

• transform: questions that either return an output scene

where a subset of the objects has been transformed to
set new attributes, or that query about latent scenes
where a subset of objects has been modified this way.
(e.g What if all the blue metal things became rubber

things?; If all of the large yellow rubber things became

gray spheres, how many gray spheres would there be?).

We treat these as program synthesis tasks: the input scenes
are specified as symbolic scene graphs consisting of an ar-

ray of structured, objects defined as a dictionary of their

attributes, and programs are designed to manipulate these
structured arrays (this data structure is the original format
in which scenes themselves are generated in (Johnson et al.,

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Supplemental: Leveraging Language for Abstraction and Program Search

2017); the images displayed in Figure 3, main text are ren-
dered using the original image rendering pipeline). Our in-
tention is not to build a visual reasoning architecture: rather,
we are interested in learning structured manipulations of
scenes. We see work in inverse graphics (such as (Yi et al.,
2018)) which outputs a structured scene graph based on
pixel images as the first step in a symbolic processing and
reasoning pipeline as analogous; we are interested in the
structured manipulation of these scene representations.

Language data: Synthetic language annotations are gener-
ated based on the original high-level templates in (Johnson
et al., 2017), as well as additional templates we define for
the extended questions in the same style. We gather human
language annotations by asking Mechanical Turk workers
to write an instruction or question describing the set of in-
ductive examples. However, due to the difficulty of solving
certain tasks in a limited time frame based on the inductive
examples alone (such as the questions about disjunctions
over scenes), we show Mechanical Turk workers the syn-
thetic descriptions for this domain and ask them to write a
semantically similar description that changes more than one
word in the original caption, and that would be ”more natu-
ral for a human to understand”. This paraphrasing paradigm
is similar to that used in (Wang et al., 2015), though we find
that in comparison to other domains it generates less diverse
language data.) We remove all punctuation, tokenize on
spaces, and use an additional domain heuristic to stem all
plurals (e.g. cubes).

Initial program primitives: We initialize all models with
a set L0 of LISP-like primitives. These are similar to the
initial list manipulation primitives used in the string editing

domain: as both domains can be treated as manipulating
structured arrays, we are interested in learning differenti-
ated, domain-specific abstractions based on a very similar
base language. L0 also includes primitives for querying
attributes of objects on the domain (these are typed getters
that simply query the object dictionary of attributes) and sev-
eral domain-specific functions necessary for manipulating
these attribute. We deliberately use a much more base level
programming language than the high-level, domain-specific
language hand-designed in (Johnson et al., 2017); our goal
is to learn the necessary abstractions.

We give a semantic gloss for primitives that are not standard
LISP primitives.

• if (bool ! t ! t ! t)

• cons (object ! list(object) !
list(object))

• car (list(object) ! object)

• map ((t0 ! t1) ! list(t0) ! list(t1))

• fold ((list(t) ! list(t)) ! (t ! list(t) !
list(t)) ! list(t))

• len (list(t) ! int)

• > (list(t) ! bool)

• < (list(t) ! bool)

• set union (list(t) ! list(t) !
list(t))

• set intersect (list(t) ! list(t) !
list(t))

• set difference (list(t) ! list(t)
! list(t))

• relate (object ! relation !
list(t)) Returns an array of objects that sat-
isfy a spatial relation with respect to an input
object.

We also include equality comparators for each of the
attribute types (e.g. eq color?; getters for each at-
tribute, and setters for each attribute. We also include
integer constants 0-9 for counting and constants for
the attributes (blue, red, big, small, rubber,
metal) based on the original object and spatial relation
constants (Johnson et al., 2017).
Domain hyperparameters: We run a coarse hyperparam-
eter search based on the baseline model to set the domain
hyperparameters. We train all models, including baselines
and ablations, using an enumerative search budget of 1000s
per task and run the models for a maximum of 5 iterations.
we run multiple random seed replications reordering the
training set, in the same way as the compositional graphics
domain. The results in Table 1 also compare a curriculum

ordering of the training set based on the number of tokens
in the synthetic language captions (split on spaces.)

S 6.2 Results and Additional Qualitative Results

In this section, we discuss additional qualitative results from
an in depth exploration of the graphics domain that were
omitted from the main paper for space, but provide addi-
tional insight on the behavior of the learned model in the
hardest learning domain (based on the differential between
baseline and LAPS-augmented performance.)

Learned abstractions and synthesized programs. Figure
4 show sample abstractions in the final libraries Lf for the
best performing models in the graphics domain as a concrete
exemplar of abstractions that are learned and how they are
used, along with sample tasks solved with these abstractions.
The figures are shown as dependency graphs to indicate how
progressively more complex abstractions build on abstrac-
tions at prior iterations of learning; we also show selected

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Supplemental: Leveraging Language for Abstraction and Program Search

probabilities from the translation model (depicted are exam-
ples from the top-3 primitive translations for a given word;
some primitives are not high probability translations for any
word.)

Joint generative model samples. Figure 3 shows samples
from the joint generative model on the graphics domain (pro-
grams from the library which are executed to produce the
task example image, and translated to produce language an-
notations) at early and later stages of training, indicating that
the joint model itself improves as learning improves, which
itself allows better training for the conditional inference
model and better abstraction guiding based on language.

References

Abelson, H. and DiSessa, A. A. Turtle geometry: The

computer as a medium for exploring mathematics. MIT
press, 1986.

Andreas, J., Vlachos, A., and Clark, S. Semantic parsing as
machine translation. In Proceedings of the 51st Annual

Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), pp. 47–52, 2013.

Andreas, J., Klein, D., and Levine, S. Learning with latent
language. arXiv preprint arXiv:1711.00482, 2017.

Artzi, Y., Das, D., and Petrov, S. Learning compact lexicons
for ccg semantic parsing. 2014.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. Deepcoder: Learning to write programs.
arXiv preprint arXiv:1611.01989, 2016.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

Dechter, E., Malmaud, J., Adams, R. P., and Tenenbaum,
J. B. Bootstrap learning via modular concept discovery. In
Twenty-Third International Joint Conference on Artificial

Intelligence, 2013.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfill: Neural program learning
under noisy i/o. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pp. 990–
998. JMLR. org, 2017.

Dumancić, S. and Cropper, A. Inventing abstractions by
refactoring knowledge.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A.,
and Tenenbaum, J. Learning libraries of subroutines

for neurally–guided bayesian program induction. In Ad-

vances in Neural Information Processing Systems, pp.
7805–7815, 2018.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep bayesian program
learning. ArXiv preprint, 2020.

Frank, M. C., Goodman, N. D., and Tenenbaum, J. B. Us-
ing speakers’ referential intentions to model early cross-
situational word learning. Psychological science, 20(5):
578–585, 2009.

Gal, Y. and Blunsom, P. A systematic bayesian treatment
of the ibm alignment models. In Proceedings of the 2013

Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language

Technologies, pp. 969–977, 2013.

Gandhi, K. and Lake, B. M. Mutual exclusivity as a
challenge for deep neural networks. arXiv preprint

arXiv:1906.10197, 2019.

Heafield, K. Kenlm: Faster and smaller language model
queries. In Proceedings of the sixth workshop on statis-

tical machine translation, pp. 187–197. Association for
Computational Linguistics, 2011.

Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman,
J., Fei-Fei, L., Lawrence Zitnick, C., and Girshick, R.
Inferring and executing programs for visual reasoning.
In Proceedings of the IEEE International Conference on

Computer Vision, pp. 2989–2998, 2017.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C.,
Zens, R., et al. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th annual

meeting of the association for computational linguistics

companion volume proceedings of the demo and poster

sessions, pp. 177–180, 2007.

Lake, B. M., Salakhutdinov, R. R., and Tenenbaum, J. One-
shot learning by inverting a compositional causal process.
In Advances in neural information processing systems,
pp. 2526–2534, 2013.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Liang, P., Jordan, M. I., and Klein, D. Learning programs:
A hierarchical bayesian approach. In Proceedings of

the 27th International Conference on Machine Learning

(ICML-10), pp. 639–646, 2010.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Supplemental: Leveraging Language for Abstraction and Program Search

⍴"

L, $

%&

'̂

T

Execute to
produce
examples

Sample
programs
from prior

Translate to
produce
language

Joint generative model from
learned translation model T

a small square
connected by a short
line and a small
triangle as arms

Joint model samples : Iteration 3

a small five gons
a small five gon gon
a small five gon and

a small five gon
a small six gon
a medium five gon

Joint model samples : Iteration 15

small 5 gons in
a row

a small 6 gon
as arms

a small square
short line

3 small 5 gon
and a small
triangle(f41 (λ (x)

((f48 x)) (fn21
1 5 5 x))

(f34 9 6 x)
(f17 (λ (x)
(get/set (λ (z)
(f12 1 (f24 (x
z))))(f20 (λ (u)
(f15 5 u)) 1 3 3)))
v)

((f10 3 x) f34
(f31 (λ (x) x)
(λ (y z) z)) 4
9 u))

'̂ =

%& =

)" =
(f6 4 4 1 x)

(f0 5 0 1 x) (f1 1 (f2 5 x))

Figure 3. (left) Joint generative model J over programs sampled from the DSL prior and natural language produced by the translation
model T (D|L), inferred from solved training tasks. Samples from the model are used to train a neural synthesizer to guide search on
more challenging, unsolved tasks. (right) Samples from the J generative model in the graphics domain shows how program complexity
increases and generated language improves across iterations, as the system both adds richer abstractions to the DSL and learns better
alignments over the solution set, enabling the trained neural model to solve more complex tasks

.

1

0.91 | three
0.98 | triangle

. . .

for

move

pen-up

0.94 | four
0.89 | square

Original DSL primitives

Learned translation
probabilities p(π | u)

0.31 | line
0.31 | short
0.09 | a

3

4

2

New primitives added through abstraction learning

f0=(λ (x y z) (for x (λ
(u v) (move z y v))))

move pen in
parameterized
loop f9=(f0 ∞ ε)

0.07 | semicircle

a small semicircle
(f19 (f9 0 x))

a medium semicircle
(f3 (f9 0 x))

a big semicircle
(f9 (* (/ ε 1) 5) x)

f14=(λ (x y) (for 7 (λ (z
u) (f9 x u)) y))

a big circle
(f14 (logo_DIVL 1 4) x)

a small circle
(f14 (logo_DIVL ε 1) x)

two nested circles
(f14 ε (f14 ε (f16 x)))

0.16 | circle
0.08 | turns
0.09 | nested

f4=(λ (x y z) (f0 x (/ 2π
y) 1 z))

0.09 | small rotates and draws a
unit line

f5=(λ (x y) (f4 x x y))

0.27 | gon
0.22 | small

rotational
symmetry by
number of sides

a small five gon
(f5 5 x)

a small nine gon
(f5 9 x)

a medium seven gon
(f5 2 (f20 7 x))

f6=(λ (x y z u) (for y (λ
(v w) (f5 z (f5 x w))) u))

four small squares in a row
(f5 2 (f6 1 4 4 x))

six small five gons in a row
(f6 1 6 5 x)

... f24=(λ (x y) (f23 (λ (z
u) (f21 y 0 x u))))

0.09 | snowflake
0.09 | arms

eight sided snowflake with a
small seven gon as arms
(f24 7 8 x)

five sided snowflake with a
short line and a medium five
gon as arms
(f24 5 (λ (x) (get/set
(λ (y) (f2 1 (f41 5 y)))
x)) z)

f32=(λ (x) (for x (λ (y
z) (move 1 (/ 2π 4) (move 1
(- 2π (/ 2π 4)) z)))))

1.0 | stepped
0.64 | staircase
0.36 | zigzag

a seven stepped staircase
(f32 7 (get/set (λ (x) x) y))

a four stepped staircase
(f32 4 (get/set (λ (x) x) y))

a five stepped zigzag
(f25 (λ (x) x) 3 8 (f32 5 y)

...

...f17=(λ (x) (pen-up (λ (y)
(f16 x y))))

0.67 | separated
0.15 | next
0.06 | space

a small circle next to a small
six gon
(f14 ε (f14 ε (f17 2
(f5 6 x))))

a small nine gon next to a
medium square
(f5 9 (f5 1 (f17 1 (f20
4 x))))

Figure 4. Abstractions and programs learned for the graphics domain. Sample abstractions (right) learned from a minimal starting DSL
(left) for solving progressively more complex graphics program synthesis tasks with language annotations. Also shown with translation
probabilities. Our iterative algorithm learns alignment-based translation probabilities between natural language words and program
primitives to guide program search and abstraction (depicted are examples from the top-3 primitive translations for a given word; some
primitives are not high probability translations for any word.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Supplemental: Leveraging Language for Abstraction and Program Search

Markman, E. M. and Wachtel, G. F. Children’s use of mutual
exclusivity to constrain the meanings of words. Cognitive

psychology, 20(2):121–157, 1988.

Nye, M., Hewitt, L., Tenenbaum, J., and Solar-Lezama,
A. Learning to infer program sketches. arXiv preprint

arXiv:1902.06349, 2019.

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D.,
and Kohli, P. Neuro-symbolic program synthesis. arXiv

preprint arXiv:1611.01855, 2016.

Pierce, B. C. Types and programming languages. MIT
Press, 2002. ISBN 978-0-262-16209-8.

Polosukhin, I. and Skidanov, A. Neural program search:
Solving data processing tasks from description and exam-
ples. 2018.

Shin, E. C., Allamanis, M., Brockschmidt, M., and Polo-
zov, A. Program synthesis and semantic parsing with
learned code idioms. In Advances in Neural Information

Processing Systems, pp. 10824–10834, 2019.

Wang, Y., Berant, J., and Liang, P. Building a semantic
parser overnight. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pp. 1332–
1342, 2015.

Wong, Y. W. and Mooney, R. J. Learning for semantic pars-
ing with statistical machine translation. In Proceedings

of the main conference on Human Language Technol-

ogy Conference of the North American Chapter of the

Association of Computational Linguistics, pp. 439–446.
Association for Computational Linguistics, 2006.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenen-
baum, J. Neural-symbolic vqa: Disentangling reasoning
from vision and language understanding. In Advances in

Neural Information Processing Systems, pp. 1031–1042,
2018.

Zhang, Y., Pasupat, P., and Liang, P. Macro grammars and
holistic triggering for efficient semantic parsing. arXiv

preprint arXiv:1707.07806, 2017.

