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Abstract

Multi-modal transformer solutions have be-
come the mainstay of visual grounding, where
the task is to select a specific object in an im-
age based on a query. In this work, we ex-
plore and quantify the importance of CNN de-
rived visual features in these transformers, and
test whether these features can be replaced by
a semantically driven approach using a scene
graph. We propose a new approach for vi-
sual grounding based on BERT (Devlin et al.,
2019), named metaBERT, that enables reason-
ing over scene graphs. In order to quantify the
importance of visual features, we inject both
the scene graph information and the visual fea-
tures to metaBERT. We find that the additional
performance due to the visual features vary
among datasets, but is mainly limited to a 10-
15% accuracy improvement. Through detailed
experiments, we explore the effect of the scene
graph quality on the performance, and observe
that utilizing scene graphs is notably beneficial
for selecting non-human objects.

1 Introduction

Visual grounding (VG) refers to the multi-modal
problem in which an image and a query about the
image is input to a machine learning model, and the
model is tasked to find the matching object in the
image. VG is critical in embodied AI: accurate ob-
ject recognition is a crucial component in selection
or manipulation of objects – it is not reasonable to
expect a robot to perform an action on a specific
object, e.g. ‘the red square block on the table‘, if it
cannot recognize the object in the first place.

The majority of the literature so far has focused
on two main scenarios: (i) phrase localization
that relates phrases of a full sentence describing
an image to its corresponding objects (Plummer
et al., 2015; Rohrbach et al., 2016; Plummer et al.,
2017; Wang et al., 2019), and (ii) referring expres-
sion comprehension that detects a particular region
through object categories, attributes, and relation-

ships with other objects (Yu et al., 2016; Hu et al.,
2016; Yu et al., 2018; Liu et al., 2019a; Yang et al.,
2019c). Both scenarios require multi-modal mod-
els to process natural language and visual features,
which is often achieved by using an R-CNN for the
visual features (Girshick, 2015; Ren et al., 2015), a
language model (e.g. an LSTM or a transformer)
for the query, and finally a fusion model that com-
bines both features (Su et al., 2019; Lu et al., 2019).

A core component for the success of VG is to
identify which objects are in the image, and how
these objects relate to each other. This sub-task is
ripe for application of scene graphs (SG), which
view objects as nodes and relationships of objects
as edges. Scene graphs have been used as supple-
mentary features for question answering (Li et al.,
2019; Lee et al., 2019), image generation (Johnson
et al., 2018), captioning (Yao et al., 2018; Zhong
et al., 2020), video understanding (Ma et al., 2018),
and image retrieval (Wang et al., 2020a; Mafla et al.,
2021). However, few works (Cirik et al., 2018;
Yang et al., 2020) explore visual grounding with
scene graphs and the limitations of SG in this frame-
work are not clear, especially in the light of recent
developments such as multi-modal transformers.

We note that a successful scene graph based ap-
proach for VG would have numerous implications:
(i) A VG solution that utilizes scene graphs would
be far more interpretable. Scene graphs translate
image regions to natural language, and thus pro-
vide an interpretable input. Further, they make it
possible to compute the importance of any of the
components in the scene graph via perturbation
driven interpretability techniques (Ribeiro et al.,
2016; Smilkov et al., 2017) or by simply changing
(or removing) the edges (or nodes) in the scene
graph. (ii) The method would allow easy data aug-
mentation. The components of the SG can be al-
tered to create new training examples, for instance
by replacing the instances of the word “red” to
“blue” both in the scene graph and the query. This



allows easy adaptation of the model to zero-shot
scenarios — similar augmentation techniques are
not possible via methods that utilize visual features
except through image generation methods such as
DALL-E (Ramesh et al., 2021) or LX-MERT (Tan
and Bansal, 2019; Cho et al., 2020). (iii) In vari-
ous applications, the scene graph is easier to obtain
than the visual features. For instance, in voice-
based navigation applications on the web, the scene
graph can be derived immediately from the markup
language (e.g. HTML) whereas utilizing visual
language transformers would add significant com-
putational cost.

To that end, in this paper we investigate whether
high quality scene graphs can replace visual fea-
tures for visual grounding. Our contributions are
as follows:

• We propose a new visual language archi-
tecture, named “metaBERT”, that utilizes
masked attention heads to reason over scene
graphs instead of visual features as in other
visual language transformers.

• We present studies that quantitatively assess
the importance of visual features in visual lan-
guage transformers by comparing metaBERT
against state-of-the-art visual transformers.
We find that, unsurprisingly, the difference de-
pends on various factors, such as scene graph
accuracy.

• We observe that in some datasets scene-graph
based approaches can perform as well as state-
of-the-art visual language transformers and
that the additional benefit of the visual fea-
tures are limited.

In the following sections, we provide the details
of metaBERT in Section 2. The numerical results
and analysis are given in Section 3. The literature
review and the ablation studies are relegated to the
Appendix.

2 Enabling VG Through Scene Graphs
via metaBERT

In this section we describe the architecture of the
proposed model. We utilize BERT (Devlin et al.,
2019) as the starting point: the philosophy of our
design is to allow BERT to encode the scene graph
using natural language, while also considering the
structured relationship between object pairs. In or-
der to achieve the said scheme, we utilize token

type embedding based on the scene graph connec-
tions to handle the relationship triplets of (subject,
relation, object).

The visual grounding task involves an image m
and a natural language query q. For a given
(m, q) pair, the model outputs a bounding box b =
[x, y, w, h], where (x, y) denote the bottom-left co-
ordinate and (w, h) are the width and height, re-
spectively. Ideally, the box covers the target re-
ferred to by the query.

In our work, we investigate the case where the
input image m is replaced with a directed scene
graph g = (V,E). The vertex set V contains n
objects detected in the image, and each object is
represented by its category c and attribute a. The
edge set E contains the relationship between ob-
jects. The k-th relationship (oi, rk, oj) is repre-
sented by its name rk and a pair of objects (oi, oj).
The scene graph grounding task can be formulated
as follows: ô = argmaxo∈V fθ(q, g), where fθ is
parameterized by learnable parameters θ, and it as-
signs a score to each object in V that indicates the
object’s relevance to the query.

2.1 MetaBERT

In order to feed BERT with the given inputs, we
treat each object as a single training instance and
concatenate (i) the natural language query, (ii) the
category and the attribute of the target object, and
(iii) its relationship with other objects, into a single
flat sequence. We illustrate how we construct the
input sequence from a scene graph in Figure 1.
We train the model to predict if the target object
is referred to by the query or not, and, thus, an
image could have training instances as same as the
number of objects. During inference, we rank the
prediction score of all targets of an image and take
the highest one as the answer.

We name the proposed model metaBERT due to
its capability of encoding structured meta informa-
tion, the main architecture of the model is given in
Figure 2. We input the summation of four embed-
dings, namely, token embedding, segment embed-
ding, sequence position embedding, and token type
embedding to indicate the connections in the scene
graph. In addition, MetaBERT can take visual fea-
ture embeddings for each object. Following BERT
and other visual-language transformers, the input
sequence starts with a special token “[CLS]", the
query and an another special token “[SEP]". We
append the target object and its relationships, and



Figure 1: Constructing the input for metaBERT from the scene graph of the target object “Printer". We omit the
query segment to focus on the scene graph. The sequence starts with visual features of the whole image and the
target object, followed by the attribute (purple) and the category (red) of the target, the relationship (yellow) where
the target is the object (subject is marked by green), and the relationship (yellow) where the target is the subject
(object is marked by blue). The model encodes one object and its relationship per instance. The relationship of
other object pairs, e.g., “box" and “tray", will be processed when either one is the target.

Figure 2: The architecture of metaBERT. The model treats each object as a single instance and takes the concate-
nation of the query, the category and the attribute of the object, and its relationship with other objects, as the input.
It outputs a binary value to predict if the target object is referred to.

use “[SEP]" to separate them. We only keep the
relation name and the name of the other objects
in the relationship to avoid duplicating the name
of the target object multiple times. All tokens are
tokenized with a 30,000 vocabulary and embed-
ded using the Word Piece Embedding (Wu et al.,
2016). A learnable position embedding is lever-
aged to indicate the order of the input sequence.
The index of position is reset to zero after each
“[SEP]". Different from BERT that has two seg-
ments (two sentences), we label the segment based
on number of “[SEP]" tokens, which helps to dis-
tinguish relationships. We further introduce token
type embeddings to differentiate components of
relationships.

MetaBERT can also leverage visual feature em-
beddings. As in other work (Su et al., 2019; Lu
et al., 2019, 2020), we obtain the visual features of
each object vRoIi by applying Faster R-CNN (Ren
et al., 2015) and extract the second to last layer’s
output. We also provide the average feature of all

objects to represent the full context. Visual features
are input to the model in the target segment, at the
same layer as the other token embeddings.

Graph Mask: When processing the target ob-
ject, we do not consider the relations among other
objects. For instance, in Figure 1, the relation be-
tween “Tray" and “Desk" will not be input to the
model when “Printer" is the target. Note that the
relationship will be considered once either “Tray"
or “Desk" is included as the target.

To make better sense of such scene graph
structures, we regularize the transformer’s at-
tention scheme. We rely on attention mask-
ing to ensure that the attention weights are re-
lated to the underlying structure of the inputs,
and that tokens representing different identities
(e.g. relations vs. object attributes) attend
each other relatively less. More specifically,
given the input sequence X = {x0, . . . ,xt}, the
self-attention outputs Z = softmax

(
QKT
√
dk

)
V,

where Q,K,V = XWQ,XWK ,XWV , re-



V7w-pointing RefCOCO+ Detected RefCOCO+ Ground Truth
Val Test Val TestA TestB Val TestA TestB

MAttNet - 86.42 65.33 71.62 56.02 71.01 75.13 66.17
VL-BERT w/o pre-training - - 66.03 71.87 56.13 74.41 77.28 67.52
ViL-BERT w/o pre-training - - 68.61 75.97 58.44 - - -
VL-BERT with pre-training - - 71.60 77.72 60.99 79.88 82.40 75.01
ViL-BERT with pre-training - 80.51 72.34 78.52 62.61 - - -
metaBERT w/o visual features 81.07 80.39 56.77 61.36 50.75 60.87 63.09 54.86
metaBERT with visual features 80.25 80.06 69.04 75.15 60.03 73.30 77.09 66.72

Table 1: Main results (accuracy) on various visual grounding tasks. RefCOCO+ Ground Truth and Detected refer
to the cases where the object bounding boxes are provided or are estimated via an object detector, respectively.

spectively, and WQ,WK and WV are learnable
weights, and they can be initialized from a pre-
trained BERT. The graph mask zeros out attention
scores for particular tokens by introducing a special
Boolean matrix M and a large negative scalar C.
Then, we set Z = softmax

(
QKT
√
dk

+MC
)
V.

Scene Graph Generation: We follow Neural
Motifs (Zellers et al., 2018) with unbiased gener-
ation (Tang et al., 2020) to obtain machine gener-
ated scene graphs. The generator is given the image
along with the region proposals; the latter can either
be the ground truth or bounding boxes obtained via
object detectors. We train the model from scratch
using the Visual Genome dataset (Krishna et al.,
2017).

3 Experiments

We evaluate metaBERT on two public visual
grounding datasets, Visual7w Pointing ques-
tions (Zhu et al., 2016) and RefCOCO+ (Yu et al.,
2016). The Visual7w Pointing dataset provides
93K training examples, 37K examples for valida-
tion, and 57K examples for testing. Each example
contains four candidate regions. RefCOCO+ takes
place in a more practical setting, where all possi-
ble objects in the image can be referred to. It has
120K and 10K examples for training and valida-
tion, respectively. The authors divide the test set
into two splits: near 6K examples in TestA that
covers human objects and 5K examples in TestB
that involves non-human objects.

We compare against three methods: ViL-BERT,
VL-BERT and MAttNet (Yu et al., 2018). The
first two models are state-of-the-art techniques that
extend the transformer structure to leverage mul-
tiple modalities, and their architectures are close
to metaBERT. MAttNet uses a modular attention
structure and is specialized to attend to certain at-
tribute words.

3.1 Main results

We report the accuracy of various models in Table 1.
The last two lines compare the results of metaBERT
with and without the visual features. We see that
the visual features provide no additional benefits
for the Visual 7w-pointing dataset, but it results in
a 10% to 14% absolute accuracy improvement in
RefCOCO+.

On the Visual7w-pointing dataset, MAttNet out-
performs ViL-BERT and metaBERT by a large
margin, possibly because it explicitly matches the
modular components of the query to the relevant
visual features. MetaBERT achieves comparable
performance to ViL-BERT, whereas adding visual
features slightly reduces the accuracy. The result of
metaBERT is much different on RefCOCO+: when
combined with visual features, it yields a compara-
ble result to non-pretrained visual language trans-
formers, but the scene graphs by themselves do not
contain enough information to address the query.

Since we use annotated scene graphs on
Visual7w-pointing and generated scene graphs on
RefCOCO+, we hypothesize that the quality of the
scene graph could significantly affect the perfor-
mance of metaBERT without visual features. We
explore the idea in Appendix A.3.

MetaBERT is trained on a single object at a
time, whereas VL-BERT and ViL-BERT are both
trained on multiple objects in a batch, and thus
can learn better contextualization. We also note
that metaBERT with visual features has a higher
accuracy than non-pretrained ViL-BERT and VL-
BERT on RefCOCO+ TestB. TestB set contains
non-human objects, and its expressions are easier
to reason on via scene graphs. Finally, we note
that the visual features require a large amount of
computing time. For instance, on the Visual7w-
pointing dataset, metaBERT without visual features
requires less than three hours to train one epoch,
and takes around 23ms per instance on inference,
whereas metaBERT with visual features takes 18



hours per epoch and 95ms per instance for training
and inference, respectively.

We include the implementation details in Ap-
pendix A.2. We further present the ablation study
and qualitative results in Appendix A.4 and A.6.

4 Conclusion and Discussion

In this work, we examine visual grounding and
investigate the feasibility of using scene graph to
replace visual features. We propose metaBERT to
encode and reason over scene graphs, and compare
metaBERT against state-of-the-art visual language
transformers to assess the importance of visual fea-
tures. The results suggest that scene graph quality
is an important factor that determine the perfor-
mance. We find that metaBERT works well with
annotated scene graph. This allows potential appli-
cations where scene graph can be derived from the
markup language (e.g. HTML) rather than visual
features from an object detector.

In our future works, we will explore ideas to
automatically generate <text, scene graph, image>
triplets, and pre-train metaBERT on them. We
hope to see additional improvements as pre-training
VLBERT and ViLBERT. MetaBERT requires as
many inferences as objects in the scene, which
might not be practical for complex scenes. We will
explore graph-based methods that directly process
the full scene graph and retrieve the relevant object
to match the query.

Ethical consideration MetaBERT is for visual
grounding applications where scene graphs can be
leveraged, and does not involve identity charac-
teristics. We conduct experiments on benchmark
datasets that have been well examined in the liter-
ature. Besides, we observe that processing scene
graphs for grounding requires less computing time
than calculating visual features from scratch, and it
could potentially reduce energy and carbon costs.
However, we must point out that some scene graph
generation methods (like the one we used in the
paper) still rely on visual features. Thus, explor-
ing alternative approaches that are eco-friendly to
obtain scene graph could be a possible direction.
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A Appendix

A.1 Related Work

Visual grounding has been widely studied in the
literature. We consider a broad definition and use
the term to describe both phrase localization (Plum-
mer et al., 2015; Rohrbach et al., 2016; Plummer
et al., 2017; Wang et al., 2019) and referring ex-
pression comprehension (Yu et al., 2016; Hu et al.,
2016; Yu et al., 2018). A common practice is to
first generate candidate regions of an image, usu-
ally achieved by Fast R-CNN (Girshick, 2015; Ren
et al., 2015), and then rank the regions based on
a natural language query using CNN/LSTM (Yu
et al., 2016; Mao et al., 2016; Nagaraja et al., 2016;
Hu et al., 2016), attention mechanism (Liu et al.,
2019b,a), modular network (Hu et al., 2017; Yu
et al., 2018), graph model (Wang et al., 2019; Liu
et al., 2020; Yang et al., 2019a; Jing et al., 2020),
variational context (Zhang et al., 2018), or, similar
as this work, transformer (Su et al., 2019; Lu et al.,
2019; Li et al., 2020a). Recently, some works relax
region proposals and propose one-stage approach
that output the referred region directly from image
pixels (Yang et al., 2019c; Zhou et al., 2019).
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Since the release of the visual genome
dataset (Krishna et al., 2017), scene graph gen-
eration has achieved remarkable progress (Zellers
et al., 2018; Chen et al., 2019b; Gu et al., 2019b;
Tang et al., 2020; Li et al., 2020b; Koner et al.,
2020; Xu et al., 2020; Wang et al., 2020c) and, due
to its abstraction of images, motivates various ap-
plications including image retrieval (Johnson et al.,
2015; Wang et al., 2020a; Mafla et al., 2021), image
generation (Johnson et al., 2018), caption genera-
tion (Yao et al., 2018; Yang et al., 2019b; Gu et al.,
2019a; Zhong et al., 2020), and visual question an-
swering (Li et al., 2019; Lee et al., 2019; Zhang
et al., 2019; Cadene et al., 2019; Hildebrandt et al.,
2020). This work differs from the literature in the
sense that we utilize the transformer (Vaswani et al.,
2017; Devlin et al., 2019) to encode scene graph
for the visual grounding task. Compared to VL-
BERT (Su et al., 2019) and ViLBERT (Lu et al.,
2019), metaBERT processes a single object at a
time and utilize its scene graph with graph mask.
Some works modify the transformer to attend on
partial inputs (Jiang et al., 2020; Beltagy et al.,
2020; Guo et al., 2019; Zaheer et al., 2020; Kitaev
et al., 2020) and encode structured graph (Wang
et al., 2020b; Yao et al., 2020; Chen et al., 2019a).
In addition, ActionBERT leverages the view hier-
archies of mobile applications for UI component
retrieval and icon prediction (He et al., 2020). ETC
splits hierarchical input into global tokens and lo-
cal tokens (Ainslie et al., 2020). (Cai and Lam,
2020) update the attention score by adding the rela-
tion embedding to the node embedding. (Yoo et al.,
2020) scale the product of the attention key and
query through the relation embedding.

A.2 Implementation Details

We keep queries as given in both original datasets.
Since the Visual7w Pointing dataset is a subset of
Visual Genome, we map each candidate region of
Visual7w Pointing to the object of Visual Genome
with the highest IoU, and retrieve the human anno-
tated scene graph, including attributes, categories,
and relationships, for those regions. We discard
samples where the IoU is less than a threshold
(70%) — these constitute less than 0.1% of the
dataset. For the RefCOCO+ dataset, we directly
apply the bounding box proposals provided in (Yu
et al., 2018), which use a Mask R-CNN (He et al.,
2017) pretrained on the COCO dataset (Lin et al.,
2014). Notably, MAttNet, VL-BERT, and ViL-

BERT utilize the same proposals to report the re-
sult.

We initialize metaBERT with pre-trained BERT
model. The size of metaBERT aligns with BERT
base, which has a hidden size of 762, 12 heads per
layer, and a total of 12 layers. Following (Jiang
et al., 2020; Ainslie et al., 2020), we apply graph
mask on six heads instead of all of them to mix
the local attention and the global attention. We
also explored adding graph mask on all heads but
observed a worse result. Different from VL-BERT
and ViL-BERT, we omit pre-training on the concep-
tual caption dataset. For generated scene graphs,
we include top-3 predictions for the name and at-
tribute of the object and the relationship between
object pairs. we use Faster R-CNN pretrained on
the Visual Genome dataset for visual features. The
visual embedding has 2048 dimensions, and we
apply a linear layer to reduce the dimension to 762.

We conduct experiments on 8 Tesla V100 GPUs
with a total batch size of 64. We train 4 epochs
for the visual7w-pointing dataset and 6 epochs for
the RefCOCO+ dataset, because the latter contains
more object candidates per image. We use the
Adam optimizer with a initial learning rate of 1e-4.
We also apply a linear learning rate scheduler with
warmups.

A.3 Sensitivity on the Quality of Scene Graph

We investigate the influence of the quality of scene
graph on the visual7w-pointing dataset. Specially,
we consider two scenarios: 1. the scene graph
shows no relationship (only attributes and cate-
gories remain); 2. the scene graph includes a mix-
ture of gold and false positive relationships. The
second case is achieved by replacing annotated
scene graph with generated ones. We do not ma-
nipulate the target object because doing so should
guarantee a wrong prediction.

Table 2 presents the results. According to the
table, the performance drops 2% when gold re-
lationships are not contained and 5% when false
positive predictions are included. The observation
also explains the low accuracy of metaBERT w/o
visual features on RefCOCO+ in Table 1: the qual-
ity and difficulty of generated scene graph holds
back the performance. Remarkably, visual7w-
pointing contains annotated scene graph, and each
visual object has on average 1.5±1.5 relationships,
whereas in RefCOCO+ our generated scene graph
has 16.3± 12.1 relationships per object. However,



V7w-pointing
Val Test

metaBERT 81.07 80.39
metaBERT w/o any relationships 79.14 -2.3% 78.73 -2.0%
metaBERT w/ false relationships 76.85 -5.2% 76.20 -5.2%

Table 2: The sensitivity on the quality of the scene graph. MetaBERT shows worse performance when no relation-
ship is used or there are false-positive relationships.

V7w-pointing
Val Test

metaBERT 81.07 80.39
metaBERT w/o segment emb. 80.11 -1.2% 79.80 -0.7%
metaBERT w/o position emb. 78.98 -2.6% 78.54 -2.3%
metaBERT w/o token type emb. 80.16 -1.1% 79.87 -0.7%
metaBERT w/o graph mask 80.77 -0.4% 80.44 +0.1%

Table 3: The ablation study. Segment embedding, position embedding, and token type embedding contribute to a
better performance, whereas the graph mask does not change the result significantly.

we can improve the performance on RefCOCO+
by incorporating visual features.

A.4 Ablation Study

To show the efficacy of the proposed metaBERT,
we conduct ablation experiments by excluding each
component. We show the results in Table 3. On
the visual7w-pointing dataset, metaBERT without
segment embedding, position embedding, or token
type embedding hurt the performance, while remov-
ing position embedding leads to the most degrada-
tion. Moreover, the usage of the graph mask does
not change the result significantly. There might be
two possible reasons: 1. other embeddings might
already address the structure of scene graph; 2. we
instantiate each training example with only one tar-
get object, and it partially relaxes the assumption
of encoding the structure. Is there another way to
encode the structured scene graph via metaBERT?
This remains an open question, and we will explore
it in the short future.

A.5 Attention Statistics

We present the distribution of the normalized atten-
tion score at the last layer that the “[CLS]" token
has received. The purpose of the visualization is
to show how the graph mask change the attention
distribution rather than to express the “goodness"
of it. We conduct the Wilcoxon signed-rank test to
check whether the graph mask yields a different at-
tention distribution compared to not using it. Since
we applied the graph mask to heads 7-12, those

heads present a different pattern of attention scores.
Although the difference of heads 1-6 are not as
visible as heads 7-12, the Wilcoxon signed-rank
test suggests that the two attention distributions are
significantly different across all heads.

A.6 Qualitative Results
We present examples of Visual7w Pointing to ana-
lyze metaBERT without visual features in Figure 4.
The top four examples are correctly answered by
metaBERT, and they indicate that the scene graph
could be valuable for grounding because it contains
the object or the relationship that the query is re-
ferring to. The bottom four examples demonstrate
where metaBERT makes mistakes. We observe
that: (i). in the 5th example metaBERT misclassi-
fies toppings on pizza as the mentioned food and
ignores the jar filled with peppers; (ii). in the 6th
example metaBERT might capture the attribute “or-
ange" but fail to understand facing front; (iii). in the
7th example metaBERT is confused by the object
“black shorts" that the player rather than the ball
boy wearing; (iv). in the last example metaBERT
might fail on encoding the location of the object,
which is also missed from the scene graph.



Figure 3: The distribution of the normalized attention score that the “[CLS]" token has received at the last layer.
Attn w. Mask and Attn w/o. Mask mean that the attention scores are from models with the graph mask and without
graph mask, respectively. The pair-wise difference indicates the attention score with graph mask is higher than the
score without graph mask.

Figure 4: We show qualitative examples that metaBERT predicts correctly (top four) and wrongly (bottom four).
A means the correct answer. P means the prediction of metaBERT. The red box in the image is the prediction of
metaBERT, and the green box is the ground truth.


