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Abstract
Building embodied autonomous agents capa-
ble of participating in social interactions with
humans is one of the main challenges in AI.
This problem motivated many research direc-
tions on embodied language use. Current ap-
proaches focus on language as a communica-
tion tool in very simplified and non diverse so-
cial situations: the "naturalness" of language
is reduced to the concept of high vocabulary
size and variability. In this paper, we argue
that aiming towards human-level AI requires a
broader set of key social skills: 1) language
use in complex and variable social contexts;
2) beyond language, complex embodied com-
munication in multimodal settings within con-
stantly evolving social worlds. In this work
we explain how concepts from cognitive sci-
ences could help AI to draw a roadmap to-
wards human-like intelligence, with a focus on
its social dimensions. We then study the lim-
its of a recent SOTA Deep RL approach when
tested on a first grid-world environment from
the upcoming SocialAI , a benchmark to assess
the social skills of Deep RL agents. Videos
and code are available at https://sites.

google.com/view/socialai01.

1 Introduction

How do human children manage to reach the so-
cial and cognitive complexity of human adults? For
Vygotsky, a soviet scholar from the 1920’s, a main
driver for this path towards "higher-level" cognition
are socio-cultural interactions with other human be-
ings (Vygotsky and Cole, 1978). For him, many
high-level cognitive functions a child develops first
appear at the social level and then at the individ-
ual level. This leap from interpersonal processes
to intrapersonal processes is referred to as inter-
nalization. Vygotsky’s theories influenced multi-
ple works within cognitive science (Clark, 1996;
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Hutchins, 1996), primatology (Tomasello, 1999)
and the developmental robotics branch of AI (Bil-
lard and Dautenhahn, 1998; Brooks et al., 2002;
Colas et al., 2020).

A more influential perspective on child develop-
ment are Jean Piaget’s foundational theories of cog-
nitive development (Piaget, 1963). For Piaget, the
child is a solitary thinker. While he acknowledged
that social context can assist development, for him
cognitive maturation happens mainly through the
child’s solitary exploration of their world. The
child is a "little scientist" deciding which experi-
ments to perform to challenge its assumptions and
improve its representation of the world.

This Piagetian view on development is well
aligned with mainstream Deep Reinforcement
Learning (DRL) research, which mainly focuses on
sensorimotor development, through navigation and
object manipulation problems rather than language
based social interactions (Mnih et al., 2015; Lilli-
crap et al., 2016; Forestier et al., 2017; Andrychow-
icz et al., 2017). The study of language has been
mostly separated from DRL, into the field of Nat-
ural Language Processing (NLP), which is mainly
focused in learning (disembodied) language mod-
els for text comprehension and/or generation (e.g.
using large text corpora as in Brown et al. (2020)).

In the last few years however, recent advances
in both DRL and NLP made the Machine Learn-
ing community reconsider experiments with lan-
guage based interactions (Luketina et al., 2019;
Bender and Koller, 2020). Text-based exploratory
games have been leveraged to study the capacities
of autonomous agents to properly navigate through
language in abstract worlds (Côté et al., 2018; Prab-
humoye et al., 2020; Ammanabrolu et al., 2020).
While these environments allow meaningful ab-
stractions, they neglect the importance of embodi-
ment for language learning, which has long been
identified as an essential component for proper
language understanding and grounding (Cangelosi
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et al., 2010; Bisk et al., 2020). Following this view,
many works attempted to use DRL to train embod-
ied agents to leverage language, often in the form
of language-guided RL agents (Chevalier-Boisvert
et al., 2018a; Colas et al., 2020; Hill et al., 2020)
and embodied visual question answering (EQA)
(Das et al., 2017; Gordon et al., 2018), and more
recently on interactive question production and an-
swering (Abramson et al., 2020). Multi-agent emer-
gent communication is another subfield which stud-
ies how language can emerge from interaction in
both embodied and disembodied scenarios (Mor-
datch and Abbeel, 2018; Jaques et al., 2019; Lowe
et al., 2020; Woodward et al., 2020).

One criticism that could be made over previous
work in light of Vygotsky’s theory is the simplicity
of the "social interactions" and language-use situa-
tions that are considered: in language-conditioned
works, the interaction is merely just the agent re-
ceiving its goal as natural language within a sim-
ple and rigid interaction protocol (Luketina et al.,
2019). In Embodied question answering, language-
conditioned agents only need to first navigate and
then produce simple one or two words answers.
And because of the complexity of multi-agent train-
ing, studies on emergent communication mostly
consider simplistic language (e.g. communication
bits).

In our work, we propose to identify a richer set
of socio-cognitive skills than those currently con-
sidered in most of the DRL and NLP literature.
We organise this set along 3 dimensions: inter-
twined multimodality (coordinating multimodal ac-
tions based on multimodal observations), theory of
mind (inferring other’s mental state, e.g. beliefs,
desires, emotions, etc) and social games (taking
part in time-extended structured social interactions).
We then study the failure case of a current SOTA
DRL approach on a grid-world social environment.
To enable the design and study of complex so-
cial scenarios in reasonable computational time,
we consider single-agent learning among scripted
agents (a.k.a. Non-Player-Characters or NPCs) and
use low-dimensional observation and action spaces.
We use templated-language, enabling to emphasize
the under-studied challenges of dealing with more
natural social and pragmatic situations.

Social affordances of NPCs. Although NPCs
can be seen as merely complex interactive objects,
we argue they are in essence quite different. NPCs,
as humans, can have very complex and changing in-

ternal states, including intents, moods, knowledge
states, preferences, emotions, etc. The resulting
set of possible interactions with NPCs (social affor-
dances) is essentially different than those with ob-
jects (classical affordances). In cognitive science,
an affordance refers to what things or events in the
environment afford to an organism (de Carvalho,
2020). A flat surface can afford "walking-on" to
an agent, while a NPC can afford "obtaining direc-
tions from". The latter is a social affordance, which
may require a social system and conventions (e.g.
politeness), implying that the NPC must have com-
plex internal states and the ability to reciprocate.
Successful interaction might also be conditioned
on the NPC’s mood, requiring communication ad-
justments.

Training an agent for such social interactions
most likely requires drastically different methods
– e.g. different architectural biases – than classi-
cal object-manipulation training. We argue that
studying isolated social scenarios featuring NPCs
in tractable environments is a promising direction
towards designing proficient social agents.

Grounding language in social interactions. In
AI, natural language often refers to the ability of
an agent to use a large vocabulary and complex
grammar. We argue that this is but one dimension
of the naturalness of language. Another, often over-
looked, dimension of this naturalness refers to lan-
guage grounding, i.e. the ability of an agent to map
specific meaning from some domain to language
(Steels, 2007). Command following (Chevalier-
Boisvert et al., 2018a; Colas et al., 2020) is an
example of language grounding in the environment.
To understand the meaning of "grow green plant",
an agent must relate both the plant in the environ-
ment to the word "plant", and the word "grow" to
the action of watering the plant. We aim to go a
step further by grounding language in social interac-
tions, i.e. requiring social context to be understood
in order to make sense of a given utterance. For
example, the meaning of a NPC’s utterance can
change if one knows this NPC is a liar.

Social skills for socially competent agents So-
cial skills have been extensively studied in cogni-
tive science (Riggio, 1986; Beauchamp and Ander-
son, 2010) and social and developmental robotics
(Cangelosi et al., 2010). Here we outline some of
those skills for the purpose of studying them in the
context of training social artificial agents.



1 - Intertwinded multimodality refers to the
ability to interact using multiple modalities (ver-
bal and non-verbal) in a coordinated manner. A
proficient agent should be able to act using both
primitive actions (moving) and language actions
(speaking), and to process both visual and language
observations (spoken by other NPCs). Importantly,
this agent must be able to learn and adapt its multi-
modal interaction sequence, rather than following
a pre-established interaction protocol, e.g. as in
EQA. (Das et al., 2017), where 1) a question is
given to the agent at the beginning of the episode,
2) the agent moves through the environment to
gather information, and 3) upon finding an answer
it responds (in language) and the episode ends. By
the term intertwined multimodality we aim to em-
phasize that the modalities often interchange and
the question of "when to use which modality" is
non-trivial, e.g. sometimes the relevant informa-
tion can be obtained by asking for it and sometimes
by looking for it.

2 - Theory of Mind(ToM) refers to the ability
of an agent to attribute to others and itself mental
states, including beliefs, intents, desires, emotions
and knowledge (Wellman, 1992; Flavell, 1999).

An agent that has ToM perceives other partici-
pants as minds like itself. This enables the agent
to theorise about other’s intents, knowledge, lack
of knowledge etc. Here we outline some, of many,
different perspectives of ToM to better demonstrate
how ToM is essential for human social interactions.

• inferring intents: the agent is able to infer,
based on verbal or non-verbal cues, what oth-
ers will do or want to do, e.g. that some social
peers are liars/trustworthy.

• false belief: the agent understands that some-
one’s belief (including its own) can be faulty
(Baillargeon et al., 2010).

• self-awareness: the capacity to take oneself
as the object of thought (Wicklund, 1975).

• imitating or emulating social peer’s be-
haviour: agent can imitate a behaviour seen
in a social peer, or emulate its goal, e.g. upon
observing a peer cut onions the agent is able
to cut the onions himself, either with the same
movement or with its own strategy.

3 - Social games is a concept closely related
to pragmatic frames (Bruner, 1985; Vollmer et al.,
2016) and language games (Wittgenstein, 1953). A

social game refers to the pattern characterizing the
unfolding of possible interactions (equivalent to a
"grammar" for social interactions or an interaction
protocol). For example, by playing turn taking
games a child extracts the rule of each participant
having his "turn". It then generalizes this role to a
conversation where it understands that it shouldn’t
speak while someone else is speaking.

Closely related is the concept of roles which was
proposed to be one of the key differences between
human and ape socio-cognitive abilities (Tomasello,
2020). A human understands that a shared goal is
completed by various participants playing different
roles, which are often equally important. Crucially,
we learn about others’ roles by playing our own.
For example, in the game of catch where one par-
ticipant throws the ball and another one catches it.
By playing the catcher role we understand what
the thrower role consists of. This makes it easy for
us to switch roles and play the thrower role.

Furthermore, humans have the ability to quickly
detect when the social game changes and adapt to
that change (ex. while playing football we are able
to participate in small talk with another player).

Main contributions:

• An outline of the core socio-cognitive skills
necessary to enable artificial agents to effi-
ciently act and learn in a social world.

• A case-study of a SOTA Deep RL approach on
a grid-world environment1 featuring scripted
NPCs to easily assess social skills.

Figure 1: TalkItOut, a simple environment to study so-
cial skills of DRL agents. Solving it requires to master
intertwined multimodality, basic Theory of Mind (de-
tecting trustworthy agents), and a basic form of Social
Game (standing near NPCs to interact with them). See
app. A.1.4 for a discussion of required social skills.

1Based on Minigrid (Chevalier-Boisvert et al., 2018b)



2 Experiments and Results

Prior to a broader study of social skills in DRL, this
work’s experiments focus on a simple environment
requiring a limited subset of social skills.

TalkItOut is a one-room grid-world environ-
ment. The agent is rewarded upon exiting the room,
i.e. saying the right passphrase ("Open sesame")
in front of the correct door (out of four, randomly
chosen for each new episode). It can both navi-
gate (turn left/right, go forward) and use natural
language (template based, 64 possibilities), and ob-
serve a partial agent-centric symbolic pixel grid
along with the history of observed language out-
puts from nearby NPCs. To locate the target door,
the agent can question three randomly placed NPCs
(by asking "Where is the exit" while standing near
them): two guides – one trustworthy and one lying
– and a Wizard that indicates which guide is trust-
worthy (e.g. "Ask Jack"). NPC names are added to
their utterances to allow identification (e.g. "Jack:
Go to red door"). See app. A.1 for details, fig. 1
for a visualization.

Implemented Baselines. Our main baseline is
a PPO-trained (Schulman et al., 2017) Deep RL
architecture proposed in (Hui et al., 2020). We
chose this model as it was designed for language-
conditioned navigation in grid worlds, which is
similar to our setup (although in our case language
input is not fixed but varies along interactions).
We modify the original architecture to be Multi-
Headed (MH-BabyAI), since our agent has to both
navigate and talk. We also consider an ablated ver-
sion that does not receive language inputs (Deaf-
MH-BabyAI) and a randomly acting agent (Ran-
dom). See appendix A.2 for details.

Results. Table 1 shows post-training success
rates on a fixed random test-set of 1000 environ-
ments for all conditions. See appendix B for addi-
tional results.

The MH-BabyAI agent doesn’t solve TalkItOut:
its average success rate of 26% is not statistically
significant from Deaf-MH-BabyAI (p>0.05, using
Welch’s student t-test). MH-BabyAI does not lever-
age language inputs: both approaches learn the
suboptimal policy of going to a random door and
saying the passphrase (NPCs are ignored). Similar
results are observed on an ablated version of the
environment that does not feature the lying guide.

One potential explanation for this failure could

Condition \ Env. Original No liar NPC

MH-BabyAI-EB 0.236± 0.01 0.996± 0.002

MH-BabyAI 0.259± 0.01 0.252± 0.010

Deaf-MH-BabyAI 0.260± 0.02 0.246± 0.014

Random 0.002± 1e−3 0.005± 0.002

Table 1: Success rate of studied baselines on TalkItOut
and a variant without the lying guide (16 seeds, mean
± stddev, 28M steps). SOTA fails to solve TalkItOut.

be that the language space is too large for the agent.
To diagnose whether this is the case, we augment
the MH-BabyAI baseline with intrinsic episodic
exploration bonuses on observed language (i.e. a
curiosity bias). The resulting MH-BabyAI with Ex-
ploration Bonuses (MH-BabyAI-EB) manages to
solve the ablated no-liar NPC environment, reach-
ing over 0.99 success rate. However, MH-BabyAI-
EB still does not solve the original environment.

Additional architectural changes were tested as
an attempt to improve performances (e.g. language
processing, see app. B), without success.

These results showcase that the original Talk-
ItOut environment seems to be a complex chal-
lenge DRL learners, especially for the social skills
it requires, i.e. handling multi-NPCs multimodal
interactions (asking the wizard then the guide) and
inferring ill intentions of the false guide.

3 Conclusion And Discussion

In this work we classified and described the main
socio-cognitive skills needed to build socially com-
petent autonomous agents. As a first step towards
building SocialAI – a test-bed to assess the social
skills of DRL learners – we performed a prelimi-
nary case study on a simple social environment, and
showed that a current SOTA DRL approach was
unable to learn the required social skills to solve
it, making it a relevant test-bed. In future work
we plan to release the full SocialAI benchmark,
which will include more SOTA baselines and mul-
tiple complex social environments to encompass a
broader range of social skills.

This work suggests that architectural improve-
ments are needed for DRL agents to learn to behave
appropriately in multimodal social environments.
One avenue towards this is to endow agents with
mechanisms enabling to learn models of others’
minds, which has been identified in cognitive neu-
roscience works as a key ingredient of human social
proficiency (Vélez and Gweon, 2020).
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Templates
Action Template

0 Where is <noun>.
1 Open <noun>.
2 Close <noun>.
3 What is <noun>.

Nouns
Action Noun

0 sesame
1 the exit
2 the wall
3 the floor
4 the ceiling
5 the window
6 the entrance
7 the closet
8 the drawer
9 the fridge
10 oven
11 the lamp
12 the trash can
13 the chair
14 the bed
15 the sofa

Table 2: Template based grammar

A Experimental details

A.1 Environment

A.1.1 Action space
The action space of the environment consists of
two modalities (primitive actions and language)
which results in a 3D discrete action vector.

The first dimension corresponds to the primi-
tive actions modality. It consists of 7 actions (turn
left, turn right, move forward, pickup, drop, tog-
gle, done). In the TalkItOut task pickup and drop
actions do not do anything and toggle and done
terminate the episode with 0 reward. The reason
for this is that we intend to use those actions in the
full benchmark.

The second and third dimensions regard the lan-
guage modality. The second dimension selects a
template (four possibilities) and the third a noun (8
possibilities). The full grammar is shown in table 2

Both modalities can also be undefined, in which
case no action is taken in the undefined modality.
Examples of such actions are shown in table 3.

Action description

(1, -, -) moves left without speaking
(1, 1, 5) moves left and utters "Open the window"
(-, 1, 5) doesn’t move but utters "Open the window"
(-, -, -) nothing happens

Table 3: Examples of various actions in the environ-
ment. Second and third dimension must both either be
underfined or not.

A.1.2 State space
The multimodal state space consists of the vision
modality and the language modality.

The vision modality is manifested as a 7x7 grid
displaying the space in front of the agent (shown
as highlighted grids in figure 1). Each location
of this grid is encoded as three integers depicting
the object type, color and additional information
(ex. NPC type: wizard or guide). For example,
a blue wizard will be encoded as (11, 2, 0) and a
blue guide as (11, 2, 1).

The language modality is represented as a string
containing the currently heard utterances, i.e. utter-
ances uttered by NPCs next to the agent, and their
names (ex. "John: go to the green door"). In case
of silence an "empty indicator" symbol is used.

As it is often more convenient to concatenate
all the utterances heard, to simplify the implemen-
tation of the agent, the implementation of the en-
vironment also supports giving the full history of
heard utterances with the "empty indicator" sym-
bols removed as additional information.

A.1.3 The task
As discussed in the main text the task consists of
three NPCs and four doors. The agent has to find
out which door is the correct one by asking the true
guide. To find out which guide is the correct one
the agent has to ask the wizard. Upon finding out
which door is the correct one the agent has to stand
in front of it and utter "Open sesame". Then the
episode ends and the reward is calculated by the
following equation:

rextr = 1.0− 0.9 ∗ t

tmax
(1)

, where t is the number of steps agent made in
the environment and tmax = 40 is the maximum
allowed number of steps. If the agent executes
done, toggle or utters "Open sesame" in front of
the wrong door the episode ends with no reward.



True guide: John
Correct door color: blue

agent goes to the wizard
Agent: Where is the exit?
Wizard: Ask John.
agent goes to one guide
Agent: Where is the exit?
Jack: Go to the red door.
agent goes to the other guide
Agent: Where is the exit?
John: Go to the blue door.
agent goes to the blue door
Agent: Open sesame

Table 4: An example of a successful episode

An example of a dialogue that might appear in a
successful episode is shown in table 4

For each episode the colors of doors and NPCs
are selected randomly from a set of six and the
names of the two guides are selected randomly
from a set of two (Jack, John). Furthermore, the
grid width and height are randomized from the min-
imal size of 5 up to 8 and the NPCs and the agent
are placed randomly inside (omitting locations in
front of doors).

A.1.4 Required social skills
In this section we will discuss the TalkItOut en-
vironment in the context of social skills required
of the agent. The upcoming SocialAI benchmark
will contain various environments each specialized
for testing different social skills i.e. some will be
specialized for multimodality and others for ToM
or Social games.

Intertwined multimodality
To solve this task the agent must use both modal-

ities both in the action and in the observation space.
Furthermore, this multimodality is intertwined be-
cause the progression in which the modalities are
used is non-trivial. To discuss this notion further
let’s imagine an example of command following.
The progression of modalities here is trivial be-
cause the agent always listens for the command
first and then looks and moves/acts to complete the
task. Another good example is embodied question
answering. Here the agent again always first lis-
tens to the question, then looks and moves in the
environment to finally, at the end, speak the answer.

In our environment, however, the agent must
choose which modality to use based on the current

state. And it will often be required to switch be-
tween modalities many times. For example, to talk
to an NPC the agent first looks to find the NPC,
then it moves to the NPC, finally the agent speaks
to it and listens to the response. This progression is
then used, if needed, for other NPCs, and finally a
similar one used to go to the correct door and open
it. Furthermore, depending on the current config-
uration of environment, the progression can also
be different. Usually, after finding out the correct
door the agent needs to look for it and move to it to
speak the password, but if the true guide is already
next to the correct door only looking for the door
and speaking the password is required.

Theory of Mind
Since the agent must be able to infer good or

bad intentions of other NPCs, a basic form of ToM
is needed. Primarily, the agent needs to infer that
the wizard is well-intended, wants to help, and is
therefore trustworthy. Using the inferred trust in
the wizard it is possible to infer the good intentions
of the true guide, and likewise the bad intentions
of the false guide.

On the other hand, as the false guide chooses
which false direction to give each time asked, it is
also possible to infer its ill-intentions by asking him
many times in the same episode and observing this
inconsistency. If an NPC gives different answers
for the same question in the same episode then it is
evident its intentions are bad.

Social games
Since social games were not the focus of this

environment, and will be studied in more detail in
the upcoming environments, they are present in this
environment only in a simple form. To talk with an
NPC the agent needs to stand in next to it, to get an
answer the agent needs to ask "where is the exit".
These simple rules (a.k.a. social conventions) are
social games i.e. grammars describing the possible
and impossible interactions. It is impossible to
communicate if you are far and get directions if
you ask "Where is the floor". The agent needs to be
able to extract these rules and use them in relation
to all the NPCs.

A.2 Baselines details

BabyAI baseline In this work we use a PPO-
trained (Schulman et al., 2017) DRL architec-
ture initially designed for the BabyAI benchmark
(Chevalier-Boisvert et al., 2018a). The policy de-
sign was improved in a follow-up paper by Hui



Hyperparameter value

learning rate 1e4

GAE λ 0.99
clip ε 1e5

batch size 1280
γ 0.99
recurrence 10
epochs 4
expl. bon. C 0.125
expl. bon. M 50

Table 5: Training hyperparametres

et al. (2020) (more precisely, we use their origi-
nal_endpool_res model). See figure 2 for a visu-
alization of the complete architecture. First, sym-
bolic pixel grid observations are fed into two con-
volutional layers (LeCun et al., 1989; Krizhevsky
et al., 2012) (3x3 filter, stride and padding set to 1),
while dialogue inputs are processed using a Gated
Recurrent Unit layer (Chung et al., 2015). The
resulting image and language embeddings are com-
bined using two FiLM attention layers (Perez et al.,
2017). Max pooling is performed on the result-
ing combined embedding before being fed into an
LSTM (Hochreiter and Schmidhuber, 1997) with
a 128D memory vector. The LSTM embedding is
then used as input for the navigation action head,
which is a two-layered fully-connected network
with tanh activations and has an 8D output (i.e. 7
navigation actions and no_op action).

In order for our agent to be able to both move
and talk, we add to this architecture a talking action
head, which is composed of three networks. All
of them are two-layered, fully-connected networks
with tanh activations, and take the LSTM’s embed-
ding as input. The first one is used as a switch: it
has a one-dimensional output to choose whether
the agent talks (output > 0.5) or not (output < 0.5).
If the agent talks, the two other networks are used
to respectively sample the template (4D output) and
the word (16D output).

Note that the textual input given to the agent
consists of the full dialogue history (without the
"empty string" indicator) as we found it works bet-
ter than giving only current utterances (see figure
3b).

Exploration bonus The exploration bonus we
use is inspired by recent works in intrinsically mo-
tivated exploration (Pathak et al., 2017; Savinov

Talking Head Navigation Head

Dialogue

Figure 2: Our Multi-Headed BabyAI baseline DRL
agent. Architecture visualization is a modified version
of the one made by Hui et al. (2020). We perform two
modifications: 1) Instead of fixed instruction inputs our
model is fed with NPC’s language outputs (if the agent
is near an NPC), and 2) We add a language action head,
as our agent can both navigate and talk.



et al., 2018; Tang et al., 2017). These intrinsic re-
wards estimate novelty of the currently observed
state and add the novelty based bonus to the extrin-
sic reward.

In this work we study a multi modal state space
and we calculate the exploration bonus only on the
language modality. We count how many times was
each utterance observed and compute an additional
bonus based on the following equation:

rintr =
C

(N(slang) + 1)M
(2)

, where M and C are hyperparameters and
N(slang) is the number of times the utterance slang
was observed during this episode.

We make our reward episodic by resetting the
counts at the end of each episode. In the current
version of the environment the agent cannot hear
his own utterances and the NPCs speak only when
spoken to. Therefore, this exploration bonus can be
seen as analogous to social influence (Jaques et al.,
2019) in the language modality, as the reward is
given upon making the NPC respond.

Our verbal episodic intrinsic reward, which uses
only the language modality, is a good example of
a bias that had to be discovered for training social
agents.

B Additional experiments

In this section we will discuss some additional ex-
periments we ran on the two environments.

Figure 3 shows the success rates for the configu-
rations discussed in the main text and displayed in
table 1. One additional configuration shown in this
figure is the one denoted "MH-BabyAI-ExpBonus-
current-dialogue". In this configuration instead of
giving the agent the full dialogue history only the
dialogue observed in the current timestep or, if no
dialogue is observed, an "empty" indicator string
("NA") is given. It is clearly visible that this con-
figuration is inferior to the one providing the agent
with the full dialogue history.

Furthermore, we ran some experiments varying
the architecture of the network. These experiments
are visible in figure 4. In this figure the "no-mem"
refers to the network lacking the final LSTM layer.
However, this network still has some form of mem-
ory as the full dialogue history is fed into the GRU
unit. We can see that, without the LSTM, the agent
is not able to solve the ablation environment. We
likewise ran experiments where we replaced the

GRU unit with a bidirectional-GRU unit ("bigru"),
and where we used attention on top of that GRU
unit ("attgru")2. We also experimented with a differ-
ent approach of representing the vision modality:
a BOW based embedding as used in (Hui et al.,
2020). In this approach each grid is represented as
a BOW and this representaiton used to retrieve the
embedding from a trainable lookup table. We can
see that these architectures, like the basic one with
the GRU, are able to solve the environment without
the liar NPC, but not the full environment.

2The attention vector was computed using a linear layer
on the LSTM’s hidden state from the previous step.



(a) Full environment (b) "NO liar NPC" environment

Figure 3: Training configuration experiments

(a) Full environment (b) "NO liar NPC" environment

Figure 4: Architectural experiments


