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Abstract

In primary school, children’s books, as well
as in modern language learning apps, multi-
modal learning strategies like illustrations of
terms and phrases are used to support reading
comprehension. Also, several studies in ed-
ucational psychology suggest that integrating
cross-modal information will improve read-
ing comprehension. We claim that state-of-
the-art multi-modal transformers, which could
be used in a language learner context to im-
prove human reading, will perform poorly be-
cause of the short and relatively simple textual
data those models are trained with. To prove
our hypotheses, we collected a new multi-
modal image-retrieval dataset based on data
from Wikipedia. In an in-depth data analy-
sis, we highlight the differences between our
dataset and other popular datasets. Addition-
ally, we evaluate several state-of-the-art multi-
modal transformers on text-image retrieval on
our dataset and analyze their meager results,
which verify our claims.

1 Introduction

When we were babies, we learned our native lan-
guage by combining our parents’ words and visual
hints. In primary school, children’s books, as well
as in modern language learning apps, like Babble1

or Duolingo2, this multi-modal learning strategy
continues as illustrations of terms and phrases are
used to support reading comprehension Also, mul-
tiple studies in educational psychology suggest that
integrating cross-modal information will improve
learning to read (Ecalle et al., 2009; Dalton and
Grisham, 2011; Hahn et al., 2014; Gerbier et al.,
2018; Kabooha and Elyas, 2018; Xie et al., 2019;
Albahiri and Alhaj, 2020).

This paper presents initial research towards lever-
aging machine learning technology within a lan-
guage learner context to improve human reading.

1https://babbel.com/
2https://duolingo.com/

In this scenario, the aim is to support a user’s read-
ing comprehension of arbitrary text by enhancing
it with context-specific visual clues from state-of-
the-art multi-modal transformers. The most pop-
ular training datasets for current models applied
on text-image retrieval are MS COCO (Lin et al.,
2014) and Flickr30k (Young et al., 2014; Plum-
mer et al., 2015). Both datasets were created by
crowdsourcing workers with the task to find short,
simple and descriptive captions for images taken
from Flickr3. We argue that sentences slightly ad-
vanced language learners might not comprehend
are presumably more complex than the captions
from COCO or Flickr30k. Hence we further claim
that current models will perform poorly on more
complex data.

The contributions of this work to verify these
hypotheses are: a) the collection of a multi-modal
dataset based on WikiCaps (Schamoni et al., 2018),
which we call WISMIR (WIkiCaps Subset for
Multi-Modal Image-Retrieval); b) an in-depth anal-
ysis and comparison of WISMIR to other multi-
modal datasets used for image-retrieval; c) a text-
image retrieval evaluation of state-of-the-art image-
retrieval models on WISMIR.

2 Related Work

During the last few years, there were significant
breakthroughs in various computer vision tasks and
models (Kirillov et al., 2020; Güler et al., 2018)
as well as in the field of natural language process-
ing. Especially with the recent dawn of transform-
ers, models are increasingly capable of understand-
ing texts semantics (Brown et al., 2020; Devlin
et al., 2019; Yang et al., 2019). This progress of
uni-modal models also led to a great leap forward
in multi-modal visio-linguistic models, which are
starting to leverage the power of transformers to
work with text and images simultaneously. One

3https://flickr.com/
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of the several multi-modal tasks where these mod-
els pushed the boundaries is text-image retrieval,
which we want to make use of in our language
learner scenario. For this task, the model’s learns
a metric function Φk,l : R|Sk|×|Il| → [0, 1] that
measures the similarity of sentence Sk and image
Il. The task’s goal is to find the best matching
image Ik = argmax

l∈P
Φq,l for a query sentence q

from a pool of images P , the similarity scores
{Φq,l | l ∈ P} have to be computed. The input to
multi-modal transformers applied on text-image re-
trieval are textual tokens of a sentence Sk together
with region features of an image Il. Usually, textual
tokens are generated by pre-trained BERT tokeniz-
ers (?). The visual region features are typically
computed by pre-trained region and object detec-
tion and classification networks such as Faster-R-
CNN with ResNet-101 (Ren et al., 2016; He et al.,
2016; Anderson et al., 2018).

Multi-modal transformer networks can be
grouped into so-called ”early-fusion” models and
”late-fusion” models. In early-fusion models such
as UNITER (Chen et al., 2020), OSCAR (Li
et al., 2020), or VL-BERT (Su et al., 2019), to-
kens of both modalities form the input to the net-
work. Self-attention heads in the transformer-
encoder layers (Vaswani et al., 2017) then com-
pute joint-representations of both modalities, i.e.,
fine-grained word-region-alignments of the words
w ∈ Sk and the visual tokens v ∈ Il. The sim-
ilarity function Φk,l is an arbitrary combination
of those joint-representations that depends on the
respective model. Despite their remarkable per-
formance of tasks on typical datasets like COCO
or Flickr30k, early-fusion models are not appli-
cable in real-world information retrieval systems
with large pool of images because it would re-
quire tremendous computational power. As op-
posed to early-fusion models, in late-fusion mod-
els, the textual and visual modalities get forwarded
through separate transformers for each modality.
Later, the output of the textual transformer and
the output of the visual transformer get fused de-
pending on the model’s specific implementation.
For example, LXMERT (Tan and Bansal, 2019)
and VilBERT (Lu et al., 2019) compute the fused
cross-modality output with a third cross-modal
transformer that takes the separate and uni-modal
transformers’ outputs as inputs. Other late-fusion
models specially designed to solve multi-modal re-
trieval tasks like TERN (Messina et al., 2020) and

TERAN (Nicola et al., 2020) use a more computa-
tionally efficient way.

3 Dataset Collection

The most popular datasets for pre-training and
fine-tuning multi-modal transformers applied on
retrieval tasks are MS COCO and Flickr30k. Both
are hand-crafted datasets, with short, descriptive
and conceptual captions created by crowdsourc-
ing workers describing mostly non-iconic images
from Flickr. Within a language learner scenario,
we argue that the sentences a user does not under-
stand while reading are presumably more complex
than the short and relatively simple caption sen-
tences from COCO or Flickr30k. Consequently,
we claim that models trained with this data will
perform worse on more complex textual data.

An example of a multi-modal dataset contain-
ing non-constrained and heterogeneous text-image
pairs is WikiCaps (Schamoni et al., 2018), which
contains about 3.8 million images and their respec-
tive English captions from Wikipedia articles. The
authors of WikiCaps only provide a tab-separated
file containing the Wikimedia file IDs of the im-
age and the respective caption together with a perl
script to download the images serially. To make
the data more accessible, we developed an effi-
cient python application, which we released on
GitHub4. This tool is capable of collecting cor-
pus statistics based on the captions using different
models and frameworks, flexibly filtering the data
with user-defined filters, downloading the images
in parallel, applying customizable transformations
to the images, and finally, persisting the data in an
easy to use and efficient format. Using the tool,
we collected and released5 a first proof-of-concept
dataset, which we call we call WISMIR (WIkiCaps
Subset for Multi-Modal Image-Retrieval), contain-
ing 187598 text-image pairs. We randomly split
the data in a training and a test set containing
178218(95%) and 9380(5%), respectively.

3.1 Data Analysis
To examine the differences of COCO, Flickr30k,
and WISMIR, we used our tool to generate the cor-
pus statistics discussed in the following. Since the
models used to generate this data are not flawless,
we utilized three different frameworks6, namely

4https://git.io/Jtw2P
5https://git.io/JscGV
6https://spacy.io/; https://www.nltk.org/;

http://polyglot-nlp.com/
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spaCy, NLTK, and Polyglot, to get a more reliable
impression on the distribution of the data. Please
note that we only show the two most notable dis-
tinctions of WISMIR, COCO, and Flickr30k in the
following due to this paper’s brevity. 7

Figure 1: Boxplot diagrams7 for the number of tokens
per caption in COCO, Flickr30k, and WISMIR, gener-
ated by different tokenization models.

Figure 2: Boxplot diagrams7 for the ratio of tokens
contained in named entities and all tokens of a cap-
tion in COCO, Flickr30k, and WISMIR, generated by
different tokenizers and named entity recognition mod-
els.

Figure 1 shows that the average number of to-
kens per caption is between 3.6− 4.6 times higher
in WISMIR than in COCO or Flickr30k. This is an
essential property because language learners will
most probably have more difficulties comprehend-
ing long paragraphs than short paragraphs. The
most significant difference between the datasets is
shown in Figure 2: In COCO and Flickr30k, there
are almost no named entities, while in WISMIR,
between 21−36 % of a captions’ tokens are related
to named entities on average.

3.1.1 Readability Comparison
To further underline the differences between
COCO, Flickr30k, and WISMIR, we computed
the Flesch-Kincaid (Farr et al., 1951) (FK) and

7On the x-axis, the name of the dataset and the framework
used to generate the statistics the respective boxplot stands for
are abbreviated by two letters: C for COCO, F for Flickr30k,
W for WISMIR, S for spaCy, N for NLTK, and P for polyglot.

Dale-Chall (Chall and Dale, 1995) (DC) readability
scores for random samples of the datasets contain-
ing 106 ± 0.1% characters. Because these read-
ability scores depend on the number of sentences,
words, and syllables in the text, counted by im-
perfect models, we use two different implementa-
tions8 to obtain more reliable results. In Figure 3,
we can observe that the captions of COCO and
Flickr30k should be easily understood by an av-
erage 4th to 6th-grade US student. In contrast,
WISMIR captions are recommended for college
students or higher, according to the FK and DC
scores.

Figure 3: Comparison of Flesch-Kincaid (FK) and
Dale-Chall (DC) readability scores of randomly sam-
pled subsets of COCO (C), Flickr30k (F), and WIS-
MIR (W) captions containing 106 ± 0.1% characters
computed by two different frameworks.

4 Model Evaluations

To verify our claim that models pre-trained solely
on COCO and Flickr30k perform poorly on text-
image retrieval with more complex and heteroge-
neous data like WISMIR, we conducted several
evaluations.

As listed in Table 1, evaluation scores on WIS-
MIR, especially for COCO and Flickr30k pre-
trained TERAN models, are meager and fall way
below our expectations. It seems to be the case
that COCO and Flickr30k did not contribute any-
thing meaningful in the models’ training process
when using them for text-image retrieval on WIS-
MIR. The same appears to be true for the other way
around, i.e., TERAN models trained on WISMIR
perform very badly on COCO and Flickr30k. Even
UNITERbase pre-trained with much more data
(5.6M samples) from COCO, Visual Genome (Kr-
ishna et al., 2017), Conceptual Captions (Sharma
et al., 2018), and SBU Captions (Ordonez et al.,
2011) performed poorly. While the results are bet-
ter for TERANW, they are still far behind the re-

8https://git.io/JtgjK; https://git.io/JtgPG)
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Model Data R@1 R@5 R@10
TERANW W 8.9 26.9 38.2
TERANC W 1.1 3.7 5.6
TERANF W 0.9 2.7 4.4
UNITERbase W 5.31 13.28 18.75

TERANW C 2.0 6.9 11.5
TERANC C 42.6 72.5 82.9
UNITERbase C 50.33 78.52 87.16

TERANW F 4.6 14.5 22.6
TERANF F 59.4 84.8 90.5
UNITERbase F 72.52 92.36 96.08

Table 1: Recall@K evaluation results of different mod-
els on text-image retrieval on multiple test sets. The
letters C for COCO, F for Flickr30k, or W for WIS-
MIR are the datasets’ abbreviations. In the subscripts,
it indicates the training data of the TERAN model.

sults of TERANC or TERANF and UNITER on
COCO or Flickr30k.

4.1 Error Analysis

To ensure that the poor performance of TERANW

does not originate from an eventual imbalance be-
tween the train and test set, we compared the data
distribution between different subsets of WISMIR
and found that the differences are neglectable.

Further, we found that the model has seen that
84% of the token types, 72% of the noun token
types, and 80% of the named entity types of the
test set during training. From these findings, we
can conclude that the difficulties with WISMIR do
not originate from surface forms of the dataset’s
captions but from a deeper semantic or discourse
level.

Further problems could be introduced by the
large number of tokens per caption on average.
Most of the words in a lengthy caption are probably
not grounded in an image region and can therefore
be regarded as noise for word-region-alignments.
When too many words are not depictable or are
not grounded in ROIs, it leads to loose coupling
between the caption and the image, which is clearly
not beneficial for the models’ training.

Other sources of issues might lie in the archi-
tecture or the training process of the models. All
weights of the model are trained via hinge-based
triplet-loss leveraging global image-caption sim-
ilarity scores computed by pooling matrices that
contain the cosine-similarities between the visual
and textual contextual embeddings. For long sen-
tences with many words and a limited number of

36 visual tokens per image, it could be challenging
to sample good (anchor, positive, negative) triplets
required by the loss function and finally cause prob-
lems while training the model.

4.2 Future Experiments

As described in the previous sections, we identi-
fied multiple obstacles that need to be overcome to
leverage multi-model transformers like TERAN for
real-world information retrieval systems within a
language learner context. Several experiments are
planned for future work to tackle the issues: We
will collect a new version of WISMIR where we
augment the named entities in the data with their
corresponding labels (”PER”, ”ORG”, etc.), and
further increase the size of the dataset to examine
the number of samples at which the performance
does no longer improve. We will train and evaluate
a new TERAN model on the improved WISMIR
version to verify that the performance improves.

Text-image retrieval is hard to evaluate because
the quality of the models’ outcomes is subjective,
and there are multiple relevant and ”correct” im-
ages for a given query. To overcome this issue,
non-exact metrics like DCG or NDCG, which rely
on relevance scores between the model results, are
often used to evaluate information retrieval sys-
tems. The problem we are faced with is that there
is no straightforward solution to compute these rel-
evance scores for WISMIR. Therefore we plan a
small-scale user study on Amazons’ crowdsourcing
platform, MTurk9, to let humans assess the models’
performances.

5 Conclusion

In this paper, we verify our claim that multi-modal
transformers for text-image retrieval, pre-trained
on common datasets like COCO and Flickr30k,
cannot generalize well on more complex textual
data. Therefore, we collected a multi-modal image-
retrieval dataset, WISMIR, and conducted several
analysis experiments that underline its differences
to COCO and Flickr30k. Additionally, we evalu-
ated two state-of-the-art multi-modal transformers
on text-image retrieval on this novel dataset to ver-
ify our claim. We discovered significant problems
the evaluated models have with our dataset and in
the dataset itself, which we will approach in future
work.

9https://www.mturk.com/

https://www.mturk.com/
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