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Abstract

gComm1 is a step towards developing a robust
platform to foster research in grounded lan-
guage acquisition in a more challenging and re-
alistic setting. It comprises a 2-d grid environ-
ment with a set of agents (a stationary speaker
and a mobile listener connected via a commu-
nication channel) exposed to a continuous ar-
ray of tasks in a partially observable setting.
The key to solving these tasks lies in agents de-
veloping linguistic abilities and utilizing them
for efficiently exploring the environment. The
speaker and listener have access to informa-
tion provided in different modalities, i.e. the
speaker’s input is a natural language instruc-
tion that contains the target and task specifica-
tions and the listener’s input is its grid-view.
Each must rely on the other to complete the
assigned task, however, the only way they can
achieve the same, is to develop and use some
form of communication. gComm provides sev-
eral tools for studying different forms of com-
munication and assessing their generalization.

1 Environment Description

Recently, datasets embodied in action and per-
ception have been used to train models for vari-
ous tasks (Vries et al., 2018; Mao et al., 2019).
One such dataset is the grounded SCAN (gSCAN)
dataset (Ruis et al., 2020) which is used for sys-
tematic generalization. We base our environment
gComm on the gSCAN dataset which is a grounded
version of SCAN benchmark (Lake and Baroni,
2018). While both these tasks focus on generaliza-
tion with the meaning grounded in states of a grid-
world, there are however, certain key differences
between gComm and gSCAN: (i) Firstly, gSCAN
focuses on rule-based generalization for navigation
tasks, wherein, an agent learns to map a natural lan-
guage instruction and its corresponding grid-view
to a sequence of action primitives. Contrary to that,

1codes & baselines: https//github.com/SonuDixit/gComm

Figure 1: gComm Environment

we present emergent communication as our main
theme, using a pair of bots, a stationary speaker
and a mobile listener, that process the language
instruction and the grid-view respectively; (ii) Sec-
ondly, unlike the supervised framework adopted
for learning gSCAN tasks, we use a more realistic
RL-framework, wherein, the listener learns by ex-
ploring its environment and interacting with it. Our
environment is conceptually similar to the BabyAI
platform (Chevalier-Boisvert et al., 2019). How-
ever, contrary to BabyAI , which focuses on lan-
guage learning, we intend to project gComm as a
general purpose platform for investigating general-
ization from the perspective of grounded language
acquisition through emergent communication.

Object Attributes: The gComm grid-world is
populated with objects of different characteristics
like shape, color, size and weight.

• Shapes: circle, square, cylinder, diamond
• Colors: red, blue, yellow, green
• Sizes: 1, 2, 3, 4
• Weights: light, heavy

https://github.com/SonuDixit/gComm


The weight attribute can be fixed corresponding
to the object size at the beginning of training. For
instance, smaller sized objects are lighter and vice
versa. Alternatively, the weight can be set as an in-
dependent attribute. In the latter option, the weight
is randomly fixed at the start of each episode so
that the listener cannot deduce the same from the
grid information, and must rely on the speaker.

1.1 Reinforcement Learning framework

Setup: In each round, a task is assigned to a
stationary Speaker-Bot, the details of which (task
and target information) it must share with a mo-
bile Listener-Bot by transmitting a set of mes-
sages mnm

i=1, via a communication channel. At
each time-step t, the listener agent selects an ac-
tion from its action space A, with the help of
the received messages mnm

i=1 and its local obser-
vation (grid-view) ot ∈ O. The environment
state is updated using the transition function T :
S × A → S. The environment provides a reward
to the agent at each time-step using a reward func-
tion r: S×A → R. The goal of the agent is to find
a policy πθ : (O,mnm

i=1) → ∆(A) that chooses
optimal actions so as to maximize the expected re-
ward, R = Eπ[

∑
t γ

tr(t)] where rt is the reward
received by the agent at time-step t and γ ∈ (0, 1]
is the discount factor. At the beginning of train-
ing, their semantic repertoires are empty, and the
speaker and listener must converge on a systematic
usage of symbols to complete the assigned tasks
thus, giving rise to an original linguistic system.

Observation Space: To encourage communica-
tion, gComm provides Speakera partially observ-
able setting in which neither the speaker nor the lis-
tener has access to the complete state information.
The speaker knows the task and target specifics
through the natural language instruction whereas,
the listener has access to the grid representation.
However, the listener is unaware of either the target
object or the task, and therefore must rely on the
speaker to accomplish the given task. The obser-
vation space of the listener comprises (i) the grid
representation; (ii) the messages transmitted by the
speaker.

The natural language instruction is parsed to
〈VERB, {ADJi}3i=1,NOUN〉 using an ad hoc se-
mantic parser2. It is then converted to the following
18-d vector representation before being fed to the

2VERB: task; ADJ: object attributes like color, size and
weight; NOUN: object shape

speaker: {1, 2, 3, 4, square, cylinder, circle, di-
amond, r, b, y, g, light, heavy, walk, push, pull,
pickup}. Each position represents a bit and is set or
unset according to the target object attributes and
the task. The breakdown of the vector representa-
tion is as follows: bits [0− 3]: target size; [4− 7]:
target shape; [8−11]: target color; [12−13]: target
weight; [14− 17]: task specification.

The grid information can either be a image input
of the whole grid or a predefined cell-wise vector
representation of the grid. In the latter case, each
grid cell in is specified by a 17-d vector representa-
tion given by: {1, 2, 3, 4, square, cylinder, circle,
diamond, r, b, y, g, agent, E, S, W, N}. The break-
down is as follows: bits [0−3]: object size; [4−7]:
object shape; [8 − 11]: object color; [12]: agent
location (is set = 1 if agent is present in that partic-
ular cell, otherwise 0); [13− 16]: agent direction.
For an obstacle or a wall, all the bits are set to 1.

Action Space: The action space comprises eight
different actions that the listener agent can perform:
{left, right, forward, backward, push, pull, pickup,
drop}. In order to execute the ‘push’, ‘pull’, and
‘pickup’ actions, the agent must navigate to the
same cell as that of the object. Upon executing a
pickup action, the object disappears from the grid.
Conversely, an object that has been picked up can
reappear in the grid only if a ‘drop’ action is exe-
cuted in the same episode. Also refer Section 1.2
for further details about task descriptions.

Rewards: gComm generates a 0-1 (sparse) re-
ward, i.e., the listener gets a reward of r = 1 if it
achieves the specified task, otherwise r = 0.

Communication: Recall that the listener has in-
complete information of its state space and is thus
unaware of the task and the target object. To ad-
dress the information asymmetry, the speaker must
learn to use the communication channel for sharing
information. What makes it more challenging is
the fact that the semantics of the transmitted infor-
mation must be learned in a sparse reward setting,
i.e. to solve the tasks, the speaker and the listener
must converge upon a common protocol and use it
systematically with minimal feedback.

1.2 Task Description

(i) Walk to a target object (ii) Push a target object
in the forward direction. (iii) Pull a target object in
the backward direction. (iv) Pickup a target object.
(v) Drop the picked up object.



Additionally, there are modifiers associated with
verbs, for instance: pull the red circle twice. Here,
twice is a numeral adverb and must be interpreted
to mean two consecutive ‘pull’ actions. When an
object is picked up, it disappears from the grid and
appears only if a ‘drop’ action is executed in the
subsequent time-steps. However, no two objects
can overlap. It should be noted that while defining
tasks, it is ensured that the target object is unique.

Target and Distractor objects: Cells in the grid-
world are populated with objects divided into two
classes: the target object and the distractor ob-
jects. The distractors either have the same color
or the same shape (or both) as that of the target.
Apart from these, some random objects distinct
from the target can also be sampled using a pa-
rameter other_objects_sample_percentage. The
listener and the objects may spawn at any random
location on the grid.

Levels: In addition to the simple grid-world en-
vironment comprising target and distractor objects,
the task difficulty can be increased by generating
obstacles and mazes. The agent is expected to nego-
tiate the complex environment in a sparse reward
setting. The number of obstacles and the maze
density can be adjusted.

Instruction generation: Natural language in-
structions are programmatically generated based on
predefined lexical rules. At the beginning of train-
ing, the user specifies the kind of verb (transitive
or intransitive), noun (object shape), and adjectives
(object weight, size, color).

1.3 Communication
Communication Channel: The communication
can be divided into two broad categories.

• Discrete: Discrete messages can either be binary
(processed using Gumbel-Softmax (Jang et al.,
2017)) or one-hot (processed using Categorical
distribution)3.

• Continuous: As opposed to discrete messages,
continuous signals are real-valued. Theoreti-
cally speaking, each dimension in the message
can carry 32-bits of information (32-bit floating

3The use of discrete latent variables render the neural net-
work non-differentiable. The Gumbel Softmax gives a differ-
entiable sample from a discrete distribution by approximating
the hard one-hot vector into a soft version. For one-hot vec-
tors, we use Relaxed one-hot Categorical sampling. Since
we want the communication to be discrete, we employ the
Straight-Through trick for both binary and one-hot vectors.

Figure 2: Maze-grid. The maze complexity and density are
user-defined parameters. The agent is required to negotiate
the obstacles while performing the given task.

point). These messages don’t pose the same kind
of information bottleneck as their discrete coun-
terpart, however, they are not as interpretable.

The following baseline implementations are
also readily available in the gComm environment.
These baselines not only enable us to investigate
the efficacy of the emergent communication proto-
cols, but also provides quantitative insights into the
learned communication abilities (Table 1).

• Random Speaker: In this baseline, the speaker
transmits a set of random symbols to the listener
which it must learn to ignore (and focus only on
its local observation).

• Fixed Speaker: Herein, the speaker’s transmis-
sions are masked with a set of ones. Intuitively,
this baseline provides an idea of whether commu-
nication is being used in the context of the given
task (whether the speaker actually influences the
listener or just appears to do so).

• Perfect Speaker: This baseline provides an illu-
sion of a perfect speaker by directly transmitting
the input concept encoding, hence, acting as an
upper bound for comparing the learned protocols.

• Oracle Listener: For each cell, we zero-pad the
grid encoding with an extra bit, and set it (= 1)
for the cell containing the target object. Thus,
the listener has complete information about the
target in context of the distractors.

Channel parameters: The communication
channel is defined using the following parameters:

• Message Length: Length of the message vector
dm sets a limit on the vocabulary size, i.e. higher



Task Baseline Convergence
Rewards

Walk

Simple Speaker 0.70

Random Speaker 0.40

Fixed Speaker 0.43

Perfect Speaker 0.95

Oracle Listener 0.99

PUSH &
PULL

Simple Speaker 0.55

Random Speaker 0.19

Fixed Speaker 0.15

Perfect Speaker 0.85

Oracle Listener 0.90

Table 1: Comparison of baseline convergence rewards. com-
munication: one-hot; grid-size: 4×4; episode length: 10; nm:
3, dm: 4; distractors: 4 (walk), 2 (push and pull)

the message length, larger is the vocabulary size.
For instance, for discrete (binary) messages, the
vocabulary size is given by |V| = 2dm . Note,
that a continuous message can transmit more in-
formation compared to a discrete message of the
same length.

• Information Rate or the number of messages nm
transmitted per round of communication.

These constitute the channel capacity, |C| = cnm
dm

.

Setting: Communication can either be modelled
in form of cheap talk or costly signalling. In the
latter case, each message passing bears a small
penalty to encourage more economic and efficient
communication protocols. Alternatively, the com-
munication can either be unidirectional (message
passing from speaker to listener only) or bidirec-
tional (an interactive setting wherein message pass-
ing happens in either direction). gComm uses an
unidirectional cheap talk setting.

1.4 Metrics:
In order to induce meaningful communication pro-
tocols, the speaker must transmit useful informa-
tion, correlated with its input (positive signalling).
At the same time, the listener must utilize the re-
ceived information to alter its behavior and hence,
its actions (positive listening). In alignment with
the works of (Lowe et al., 2019), we incorporate
the following metrics in our environment to assess
the evolved communication protocols.

• Positive signalling: Context independence (CI)
is used as an indicator of positive signalling. It

Figure 3: Lights Out

captures the statistical alignment between the
input concepts and the messages transmitted by
the speaker and is given by:

∀c ∈ C : mc = arg max
m

pcm(c|m)

CI(pmc, pcm) =
1

|C|
∑
c

pcm(c|mc)pmc(mc|c)

Both pcm(c|m) and pmc(m|c) are calculated us-
ing a translation model by saving (m, c) pairs and
running it in both directions. Since each concept
element c should be mapped to exactly one mes-
sage m, CI will be high when the pcm(c|m) and
pmc(m|c) are high.

• Positive listening: We use Causal Influence of
Communication (CIC) of the speaker on the
listener as a measure of positive listening. It
is defined as the mutual information between
the speaker’s message and the listener’s action
I(m, at). Higher the CIC, more is the speaker’s
influence on the listener’s actions, thus, indicat-
ing that the listener is utilizing the messages.

• Compositionality: Compositionality is mea-
sured using the topographic similarity (topsim)
metric (Brighton and Kirby, 2006). Given two
pairwise distance measures, i.e. one in the con-
cept (input) space ∆ij

C and another in the mes-
sage space ∆ij

M, topsim is defined as the correla-
tion coefficient calculated between ∆ij

C and ∆ij
M.

Higher topsim indicates more compositionality.

1.5 Additional features
We introduce a lights out feature in the gComm
environment through which the grid (including all
its objects) is subjected to varying illuminations
(Figure 3). The feature can be activated randomly
in each episode and presents a challenging situation
for the agent where it is required to navigate the
grid using its memory of the past observation. Note
that this feature is useful only when used with an
image input as the grid representation.
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