
Extracting Phone Numbers from Adversarial & Visually Corrupted Text

Timothy Forman and Nathanael Chambers
Department of Computer Science

United States Naval Academy
tforman37@gmail.com, nchamber@usna.edu

Abstract

Adversarial text is written with obfuscated
words and characters that fools machine
learned extractors in what would otherwise
have been normal language for extraction. So-
cial media often employs obfuscation for enter-
tainment and style. Illicit domains like human
trafficking use it in online advertisements, and
recent work proposed the use of neural CRFs
with character image recognition to extract
phone numbers from such noisy text. However,
that work simplified the task to reading short
text snippets, rather than full pages. This paper
proposes a new method to use prior adversarial
work within a full real-world document task,
and shows that small algorithm extensions can
achieve similar performance. Further, we ex-
periment with state-of-the-art visual recogni-
tion models and unicode injection techniques.
Results show steady performance despite in-
creased task difficulty, and only a 6% drop in
accuracy when extracting from full documents
rather than short snippets.

1 Introduction

Obscured text is often written to fool automatic ex-
tractors, but it also appears in social media simply
as an expression of personal style (replacing the
letter ‘O’ with an emoticon, or ‘leetspeak’ of the
1980’s). While the former’s usage is more decep-
tive in its motives, both are ‘adversarial’ in nature
to an automatic extractor. This paper is relevant
to both uses, but we focus on the illicit domain of
human sex trafficking in its evaluations (and as an
important societal use case). While our evaluation
domain is specific, the broader task of extracting
from adversarial noisy text is a general challenge
for the NLP community.

Most recently, Chambers et al. (2019) proposed
a visual neural conditional random field (CRF) that
identified phone numbers in adversarial text. An
example of an obfuscated text snippet from their
challenge data is shown here:

3wõn7_28tree(øne)_573

The obfuscations in this text snippet include char-
acter visual swaps, homonyms, and noisy separa-
tors. This prior work showed how to use a visual
character model, training a CNN to recognize each
character by its 34x34 image, and then generalizing
to recognize unicode character confounders. How-
ever, their models and evaluations simplified the
task by only looking at bounded snippets where the
system assumes the entire snippet holds a single
phone number. This paper instead shows how to
extend an extractor to apply first a longer padded
snippet, and then second, a full document. Our new
task is thus more complete and realistic; below is
the above example in the padded setting (including
a ‘140’ distractor):

no strings 140 a friend 3wõn7_28tree

(øne)_573 call me 62yo safe 4 you

Since the phone number does not begin at the
start, training a model requires a variety of diverse
training examples. Further, a simple model does
not transfer to longer advertisements where most
of the text is not a phone number. We first show
that this more difficult padded setting can be solved
with similar results to the easier bounded task sim-
ply by training on padded text. Second, we show
how to transfer such a noise-aware model to full
document text extraction with a sliding window de-
tection approach, then followed by the standard
phone number extractor. Despite moving from
phrases to full documents, extraction performance
only loses 6% in full phone number accuracy.

The main contributions in this paper are (1) the
first adversarial phone number extraction from full
documents, (2) results on a sliding window algo-
rithm that show minimal loss, (3) experiments on
integrating a SOTA hand-writing recognizer, and
(4) a new dataset of full advertisements rather than
short snippets.



Snippets (Chambers et al., 2019) 289nu&\/eI68500
Padded Snippets ogle Daves Group for all I 289nu&\eI68500 stream now - m4t (sling to
Full Advert. Hi I’m rain I’m mobile looking for serious upscale men that want some companion

ship ... I’m 5 8 and 140 thick 40ddd pretty feet long hair hmu u won’t be disappointed
289nu&\/eI68500 I’m only no Detroit area s I’m young tight ready to play

Table 1: The 3 types of datasets for this task: second and third are new to this paper and the focus of experiments.

2 Previous Work

This paper builds on the phone number extraction
work in Chambers et al. (2019). They proposed a
neural CRF over characters, and showed how to
integrate 34x34 images of their character set into a
CNN image input to their model. As the first to do
this task, they limited it to short snippet extraction
where the bounds of the snippet exactly includes
the phone number. They concluded with a pilot ex-
periment on full ad text and a rudimentary “padded”
model. This paper extends their pilot results, evalu-
ating a range of padded models on a new full-text
dataset. An earlier system, TJBatchExtractor, used
a rule-based regular expression setup (Dubrawski
et al., 2015). It has been used for trafficking ID
(Nagpal et al., 2017) and other works primarily
with non-obfuscated text.

More broadly, the sex trafficking domain has
focused more on linking advertisements through
mentioned entities (Szekely et al., 2015) or train-
ing classifiers for types of trafficking ads (Alvari
et al., 2016, 2017). Phone numbers are core in-
puts to most systems, but they assume extraction
is given, and many found phone numbers to be im-
portant features (Dubrawski et al., 2015; Nagpal
et al., 2017; Li et al., 2018) or even treated them as
gold answers for prediction (Rabbany et al., 2018;
Li et al., 2018). Phone numbers are one of the most
stable links to entities (Costin et al., 2013).

Finally, a lot of work in the image community is
relevant, and our model uses an image database
of 65k unicode characters developed by BBVA
Next Security Lab (github.com/next-security-lab)
for phishing prevention. Related work uses CNNs
for Asia-language classification (Liu et al., 2017;
He et al., 2018). We also use data augmentation
(Ding et al., 2016; Xu et al., 2016) to train the
visual models. This is commonly used to learn ro-
bust recognizers (Salamon and Bello, 2017; Zhong
et al., 2017).

3 Characteristics of Obfuscation

We briefly summarize the types of obfuscation that
are seen in adversarial text, but refer the reader to
Chambers et al. (2019) for a complete summary.

Most obfuscations fall into 6 categories:

Digit(s) Obscured Text
Digits as Lexemes 4 FOUR
Homophones 24 twenny fo
Letters as Digits 1 I

Visual 8 !
Separators 410 4–1 _ 0
Reasoning 4 add(3+1)

The majority are substitutions of normal digits
(4) into long form words (four or fore), visual
lookalikes (unicode version of 8), or the insertion
of distractors between digits. The visual decep-
tion is most difficult because they may be out-of-
vocabulary or rarely seen in related contexts. Prior
work proposed a CNN visual model to recognize
character shapes, and this paper continues with
those architectures.

While any one of these challenges might be
‘solved’ independently, the combination of these
in a single text makes the task extremely difficult.
Further, the main prior work on this topic used a
simplified version where the input is just the ob-
scured phone number, rather than a longer piece
of text with the phone number hidden inside. This
paper thus includes another type of obfuscation: an
unknown location for the number. This paper is
novel by both finding the number and extracting it.

4 Datasets

Table 1 shows an example of each dataset. The
first is Snippets, taken from Chambers et al. (2019).
This is the base task where the snippet is just the
phone number. We use the same training set of
100k valid phone numbers that were randomly per-
muted with a variety of obfuscation operations. Be-
cause real-world examples are too few for neural
training, this is an artificially generated training
set. Most are more difficult to read than real-world
examples, hence it allows the model to generalize
to unseen real text.

We developed a second dataset called Padded
Snippets, modifying the above Snippets by expand-
ing each snippet to character length 70 by adding
real-world text to its left and right with space sep-
arators. The text was randomly pulled from real



+

B6

B1

LSTM
Char

Embeddings

+

Position

Attention
CRF

I

6

Character

Images
CNN CNN

Max pool +

Flatten
Dense

Figure 1: Abbreviated diagram of a 70-char network (only 2 of 70 inputs shown) to an LSTM with CRF predictions. Here the ’I’
is predicted to be B1, beginning a 1 digit, and ’6’ to B6. Models without image input begin at the Char Embeddings layer.

advertisements to ensure realistic noise on both
sides. The amount on the sides was also random-
ized, ensuring the number’s location to vary across
examples. The result is 100k padded snippets.

Finally, the third dataset unique to this paper
is the Full Advert Dataset, comprised of real ads
scraped from Backpage and Craigslist, and gold
phone numbers identified by volunteer annotators.
Again, see Table 1 for examples. All data is avail-
able for download 1.

5 Models for Snippet Extraction

Our baseline is the best performing model from
Chambers et al. (2019). They showed that tradi-
tional NLP models with trained character embed-
dings struggle on unseen characters, so the input
to this baseline is 34x34 images of characters. A
stack of CNN layers transform each into a character
embedding of size E, which is then input to a bi-
directional LSTM whose hidden states are fed into
a top-level CRF. CRF predictions use the standard
BIO format on 10 possible digits with an Other
category. Figure 1 shows a partial visualization of
this model.

Using the above, we then train on padded in-
puts (Section 4) to see if the CRF can simply learn
the added complexity. Further, we propose an im-
provement to its image recognition: instead of
training our CNNs, use the state-of-the-art from
the image recognition community. EMNIST is
a handwriting task to recognize letters and dig-
its. We used a recent EMNIST system as a black-
box (github.com/shubhammor0403/EMNIST): the
input being our characters, with the output a 62-
dimension vector of probabilities (52 letters, 10
digits). This vector becomes the embedding for
the character instead of training our own CNNs
(inserted at ‘Char Embeddings’ of Figure 1).

We trained three variants of this EMNIST input:
the first uses the 62-d vector as untrainable input
embeddings, and the second adds a trainable dense

1www.usna.edu/Users/cs/nchamber/data/phone/

layer of size E on top of the 62-d input. The dense
layer(s) gives the model the ability to fine-tune
dense weights over the non-trainable 62-d input.
We tested a 2-layer deep version of this, and a
third version that concatenates it to our own learned
CNNs.

Document Extraction
One of the difficulties for full document extraction
is the lack of training data, something that plagued
the snippet extractors above. We don’t have enough
examples to train a full-document CRF, and ap-
plying a snippet-trained model outputs too many
false positives. Advertisements are much longer,
so the model needs to learn to ignore most inputs,
as well as numeric distractors that appear, such as
age, height, and weight. Rather than generating
another artificial dataset, we instead propose a win-
dow span algorithm that can plugin any blackbox
phone number extractor.

Our approach to window span identification
splits the document into windows of text, and we
then ask the extractor to output a phone number
from each window. The extractor includes its over-
all probability, so we identify the window with
highest probability of containing a phone number.
This is our window identification step. We compute
P (phone|span) =

∏9
i=0maxjP (di = j|span)

A document’s span with the highest probability
is our target span. Once identified, the remaining
task is simply phone number extraction as applied
by the previous section’s models.

6 Experiments

All extraction models were trained on our new 100k
artificial Padded Phone Snippets (Section 4). 90k
were used for training and 10k to determine con-
vergence. The set of unicode characters used for
training and testing were distinct from one another,
to determine if the models were truly generaliz-
ing on the character’s visual features. Based on
development set optimization, all models use char-
acter embedding size E=200 and LSTM internal



no unicode + 30% unicode
Leven Perfect Leven Perfect

RNN+CNN 77.2 42.9 70.3 19.4
CRF 79.2 49.8 55.5 0.7
CRF+CNN 79.0 53.3 73.5 27.4
CRF+EMNIST 79.0 52.9 54.3 2.0

Table 2: Padded Snippets results with unseen unicode injections.

DEVELOPMENT TEST
no unicode 10% 30% 50% no unicode 10% 30% 50%

CRF 50.0 23.9 0.0 0.0 38.3 12.2 1.0 0.0
CRF+CNN 52.4 43.7 27.9 19.9 39.3 31.8 21.4 10.5

Table 3: Window ID + Extraction combined results reported as perfect accuracy %

dimension size D=200 with a training dropout of
0.25. CNN convolution sizes of 4 and 8 were used
respectively for the two CNN layers.

We report results with two metrics from prior
work: Levenshtein edit distance and perfect accu-
racy. Levenshtein distance counts edits to turn the
predicted phone number into the correct answer.
This is more appropriate than digit accuracy be-
cause the CRF can output more or less than 10
digits. Perfect accuracy is how many phone num-
bers were predicted correct in all 10 digits.

Real-world Test: We report results comparing
Snippet performance on the development set, but
then report full document performance only on the
real-world test set. We did not run models on the
test set until the very end after choosing our best
settings on the development set. These are unseen
adversarial numbers.

Real-world Unicode Test: We also inject unseen
unicode into the test set. This further tests a
model’s generalization. Using a hand-created char-
acter lookup of visually similar unicode characters,
we replace varying X% of the adversarial text with
unicode lookalikes not seen in training.

Finally, all reported results are the average of 4
trained/tested models of the same architecture.

7 Results and Discussion

The CRF with CNN performed best on our new
Padded Snippets dataset, see Table 2. Our new re-
sults mirror relative performance from prior work,
but now on the more difficult padded snippets, sug-
gesting that our training with pads was sufficient.
Integrating EMNIST failed to capture characters
(2% vs 27.4% CNN), suggesting that EMNIST
handwriting is too dissimilar from our unicode
recognition challenge. Most important, Chambers

et al. (2019) reported 58.1% perfect on ‘easy snip-
pets’, only 6% higher than our 53.3% on the more
difficult Padded Snippet task.

The full document results (see Table 3) are the
first real-world advertisement results for adversar-
ial phone number extraction. We ran the best CRF
and CRF+CNN models from the development set
results on this full document task. Even when re-
quiring window search before extraction, extraction
on ads with no injected unicode is 52.4% compared
to padded snippets at 53.3%, showing a very small
drop in performance due to window identification.
On the test set, CRF+CNN extracts 31.8% of phone
numbers from a 10% unicode document, compared
to a meager 12.2% without CNNs. Window ID re-
sults were 95-99% accurate in finding the text span,
so extraction performance changed by only 1-4%
from Padded Snippet to Full Advert depending on
the model used.

Previous work on adversarial phone number
extraction showed good performance on a con-
strained task: bounded snippets. We have shown
that constrained models can be adapted to full real-
world document extraction by expanding training
to padded snippets, utilizing injected unicode in
training, and using a window identification algo-
rithm prior to extraction. We will release all code
for future replication, as well as the new datasets.

Conclusion
Social media is full of adversarial text, both inci-
dental and intentional. While the societal impact
of our particular domain, human sex trafficking, is
critically important, our results are generalizable to
other online communication domains as well. Uni-
code and emoticon usage will continue to expand,
so visual models of language will grow in impor-
tance. We hope our results inspire future work on
adversarial text extraction.



8 Acknowledgments

This work would not be possible without the help
of the Global Emancipation Network, nor the finan-
cial and physical support of the DoD HPC Mod-
ernization Office by enhancing our undergraduate
education and research. Finally, thanks to the Maui
HPC Center for their support of midshipmen re-
search.

References
Hamidreza Alvari, Paulo Shakarian, and J. E. Kelly

Snyder. 2017. Semi-supervised learning for detect-
ing human trafficking. In Semi-supervised learning
for detecting human trafficking.

Hamidreza Alvari, Paulo Shakarian, and J.E. Kelly Sny-
der. 2016. A non-parametric learning approach to
identify online human trafficking. In IEEE Confer-
ence on Intelligence and Security Informatics (ISI).

Nathanael Chambers, Timothy Forman, Catherine Gris-
wold, Kevin Lu, Yogaish Khastgir, and Stephen
Steckler. 2019. Character-based models for adver-
sarial phone extraction: Preventing human sex traf-
ficking. In Proceedings of the 5th Workshop on
Noisy User-generated Text (W-NUT 2019), pages
48–56.

Andrei Costin, Jelena Isacenkova, Marco Balduzzi, Au-
rélien Francillon, and Davide Balzarotti. 2013. The
role of phone numbers in understanding cyber-crime
schemes. In 2013 Eleventh Annual Conference on
Privacy, Security and Trust, pages 213–220. IEEE.

Jun Ding, Bo Chen, Hongwei Liu, and Mengyuan
Huang. 2016. Convolutional neural network with
data augmentation for sar target recognition. IEEE
Geoscience and remote sensing letters, 13(3):364–
368.

Artur Dubrawski, Kyle Miller, Matthew Barnes,
Benedikt Boecking, and Emily Kennedy. 2015.
Leveraging publicly available data to discern pat-
terns of human-trafficking activity. Journal of Hu-
man Trafficking, 1.

Linchao He, Dejun Zhang, Long Tian, Few Han,
Mengting Luo, Yilin Chen, and Yiqi Wu. 2018.
Visual-based character embedding via principal
component analysis. In International Conference of
Pioneering Computer Scientists, Engineers and Ed-
ucators, pages 212–224.

Lin Li, Olga Simek, Angela Lai, Matthew P. Daggett,
Charlie K. Dagli, and Cara Jones. 2018. Detection
and characterization of human trafficking networks
using unsupervised scalable text template matching.
In IEEE International Conference on Big Data (Big
Data).

Frederick Liu, Han Lu, Chieh Lo, and Graham Neu-
big. 2017. Learning character-level compositional-
ity with visual features. In ACL.

C. Nagpal, K. Miller, B. Boecking, and A. Dubrawski.
2017. An entity resolution approach to isolate in-
stances of human trafficking online.

Reihaneh Rabbany, David Bayani, and Artur
Dubrawski. 2018. Active search of connections for
case building and combating human trafficking. In
KDD.

Justin Salamon and Juan Pablo Bello. 2017. Deep con-
volutional neural networks and data augmentation
for environmental sound classification. IEEE Signal
Processing Letters, 24(3):279–283.

Pedro Szekely, Craig Knoblock, Jason Slepickz, An-
drew Philpot, et al. 2015. Building and using a
knowledge graph to combat human trafficking. In
International Conference on Semantic Web (ICSW).

Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen,
Yangyang Lu, and Zhi Jin. 2016. Improved re-
lation classification by deep recurrent neural net-
works with data augmentation. arXiv preprint
arXiv:1601.03651.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li,
and Yi Yang. 2017. Random erasing data augmenta-
tion. arXiv preprint arXiv:1708.04896.


