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Abstract

Human language has been described as a sys-
tem that makes use of finite means to express
an unlimited array of thoughts. Of partic-
ular interest is the aspect of compositional-
ity, whereby, the meaning of a compound lan-
guage expression can be deduced from the
meaning of its constituent parts. If artificial
agents can develop compositional communica-
tion protocols akin to human language, they
can be made to seamlessly generalize to un-
seen combinations. Studies have recognized
the role of curiosity in enabling linguistic de-
velopment in children. In this paper, we seek
to use this intrinsic feedback in inducing a sys-
tematic and unambiguous protolanguage. We
demonstrate how compositionality can enable
agents to not only interact with unseen objects
but also transfer skills from one task to another
in a zero-shot setting: Can an agent, trained to

‘pull’ and ‘push twice’, ‘pull twice’?.

1 Introduction

In the recent past, there has been a great deal of
research in the field of emergent language in artifi-
cial agents interacting in simulated environments
(Kirby, 2001; Havrylov and Titov, 2017; Tieleman
et al., 2019; Gupta et al., 2020). However, the real
question here is, to what extent do these evolved
protocols resemble natural language? Recent stud-
ies have revealed the following about emergent
languages: (i) they do not conform to Zipf’s Law
of Abbreviation (Chaabouni et al., 2019); (ii) com-
munication protocols either do not follow composi-
tionality patterns of natural language (Kottur et al.,
2017) or are not always interpretable (Lowe et al.,
2019); (iii) emerged protocols are sensitive to ex-
perimental conditions (Lazaridou et al., 2018).

Although compositionality is not crucial to
achieving generalization, more compositional pro-
tocols have been shown to display higher zero-shot
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performance (Ren et al., 2020). While work on
incorporating compositionality into emergent lan-
guages is still in its early stages, certain works
(Mordatch and Abbeel, 2018; Chaabouni et al.,
2020) have proposed to use limited channel capac-
ity as a means to achieve composition. However,
we argue that agents may fail to develop meaning-
ful communication protocols in such a restricted
setting. Motivated by human behavior, we formu-
late intrinsic rewards (Gopnik et al., 2001; Baldas-
sarre and Mirolli, 2013) to provide incentives to
the agents for paying attention to communication
despite having a limited channel capacity. Forced
to deal with it to earn more intrinsic rewards, the
agents must learn to use a more systematic and
unambiguous protolanguage.

As proof of concept, we push the boundaries of
compositionality to a more challenging multi-task
settings, arguing that it can also support the acqui-
sition of a more complex repertoire of skills (per-
forming a pull twice task when it has been trained
to pull, push and push twice), in addition to gener-
alizing over novel composition of object properties
(pushing red square when it has been trained to
push a red circle and a blue square) 1.

2 Problem Setup

We analyze a typical signalling game (Lewis, 1969),
comprising a stationary Speaker-Bot (speaker) and
a mobile Listener-Bot (listener), by modelling it
in form of a Markov Decision Process specified by
the tuple (S,O,A, r, T , γ). At the beginning of
each round, the speaker receives a natural language
instruction (push a red circle) and communicates
the same using discrete messages mnm

i=1, sampled
from a message space M, to the listener over a
communication channel. Here, dm is the dimen-
sion of the message mi, and nm is the number
of messages (these constitute the channel capac-

1demos:https://sites.google.com/view/compositional-
comm

https://sites.google.com/view/compositional-comm
https://sites.google.com/view/compositional-comm


ity, |C| = cnm
dm

). At each step t, the listener re-
ceives an observation o(t) ∈ O, comprising the
2D grid-view and the received messages mnm

i=1,
and takes an action a(t) ∈ A. The goal of the
listener is to choose optimal actions according to
a policy π : (O,mnm

i=1) 7→ ∆(A), to maximize
its long-term reward R =

∑
t γ

tr(t). Here, γ is
the discount factor and T is the transition function
T : S × A 7→ S. The environment generates a
0-1 (sparse) reward, i.e., the listener gets a reward
of r = 1 if it achieves the specified task, other-
wise r = 0. However, the listener has no informa-
tion about either the task or the target, and relies
on the speaker for the same. Given a language
L(.) : C 7→ M, we use topographic similarity (top-
sim) (Brighton and Kirby, 2006) between C (set of
concepts) andM (set of messages) as a measure
of compositionality. Our work is contrasted with
that of gSCAN (Ruis et al., 2020) which focuses
on rule-based generalization using a supervised
learning framework.

3 Approach

3.1 Environment Description

In our experiments, we use a 4 × 4 grid. Cells
in the grid contain objects characterized by cer-
tain attributes like shape, size, color and weight.
These objects can either be the target object or
the distractor objects. Distractors have either the
same color or the same shape (or both) as that
of the target. We keep the number of distractors
fixed (= 2). The listener and the objects may
spawn at any random location on the grid. Given
an instruction, it is first processed using a parser
to 〈VERB, {ADJi}3i=1,NOUN〉2. The speaker
transmits the same using a set of messages to the
listener which, then, processes the grid representa-
tion and the received messages to achieve the given
task. In our experiments, we use a {0, 1}dgrid×4×4
vector array for the grid representation, where each
cell has a dgrid-dimensional encoding.

3.2 Model Description

(1,2) The speaker receives the parsed input instruc-
tion parsed. (3) The speaker uses an encoder to
map the concept input to a hidden representation
∈ Rnm×dh . From this representation, a set of one-

2VERB: task (‘walk’, ‘push’, ‘pull’); ADJ: object at-
tributes like color (‘red’, ‘blue’, ‘yellow’, ‘green’), size
(‘small’, ‘big’) and weight (‘light’, ‘heavy’); NOUN: object
shape (‘square’, ‘circle’, ‘cylinder’, ‘diamond’)

Figure 1: Model Description

hot encoded messages mnm
i=1 ∈ {0, 1}dm are sam-

pled (during training) using Categorical sampling,
which are then transmitted over the communica-
tion channel. The number of messages nm is set
to |〈VERB, {ADJi}3i=1,NOUN〉|. During evalua-
tion, sampling is replaced with an arg max(.). We
use the Straight Through trick (Jang et al., 2017)
to retain differentiability. (4) At each step, the grid
input is mapped in the Grid Encoder to an output
Gt ∈ RdG×4×4. (5) Next, we compute the attention
weights α16

i=1 for each grid cell by taking a normal-
ized dot product between z and Gi×dGt . A weighted
combination is fed to the sub-policy networks.

The listener learns to (i) identify the target ob-
ject in the context of distractors, (ii) interact with
the target object by executing a task specified by
the speaker. We use a hierarchical-RL framework
(Sutton et al., 1999) for training. There are two
sub-policies corresponding to the PUSH and the
PULL tasks. (6, 7) In each round, the master policy
selects either sub-policies using the received mes-
sages3. The sub-policies have a shared input, which
includes the grid encoder and the attention network.
The whole framework is trained end-to-end using
REINFORCE (Williams, 1992).

In order to induce a more efficient training, we
keep a measure of the Learning Progress (LP) of
the listener for all tasks on a held-out set, where
LP for task i is given as LPi = |ri − µi|. Here,
µi denotes the running mean of rewards for task
i. The tasks are sampled from a Categorical distri-
bution with probabilities p(i) = LPi∑

j LPj
and, con-

sequently, episodes corresponding to the sampled
tasks are generated. This way, the listener can keep
track of goals that are already learned, or can insist
on goals that are currently too hard.

3.3 Inducing Compositionality

We would ideally want the concept to message
mapping to be injective (one-to-one), i.e. ∀c, c̃ ∈
C,M(c) = M(c̃) =⇒ c = c̃. Furthermore, the

3actions spaces: master policy: {A, B, Null}; subpolicy
A/B: {left, right, forward, backward, push/pull}



Figure 2: [Best viewed in color] Demonstration of Intrinsic Speaker on the numeral split for task PULL TWICE. Here, the
green circle is heavy, hence the listener has to apply two units of force (TWICE) to pull it.

messages inM must exhibit a systematic structure
(in holistic languages, one can satisfy the injec-
tive property without being compositional). Stud-
ies on language evolution have proposed limiting
the channel capacity of communication as a con-
straint for achieving compositionality (Nowak and
Krakauer, 1999). Yet, in the course of our experi-
ments, on increasing |C|, we observed rather pre-
dictably that, with a limited channel capacity, it be-
comes increasingly difficult for the speaker to con-
verge upon a consistent and unambiguous mapping
from C to M. Consequently, the listener would
either ignore the information from the speaker
(speaker abandoning), or may exploit the inade-
quate information (undercoverage4) to converge
on a local optimum (learning a fixed sequence of
actions). To that end, we propose two types of
intrinsic rewards to address these issues.

Undercoverage: The limited channel capacity
acts as an information bottleneck, impeding the
speaker’s ability to transmit unambiguously. There-
fore, it becomes difficult for the listener to infer the
decoded messages at its end. To address this issue,
we formulate a notion of compositionality from
recent works in disentanglement (Higgins et al.,
2017). We propose to use the Mutual Informa-
tion (MI) between the concepts and the messages
I(C,M) as an intrinsic reward:

I(C,M) = H(C)−H(C|M)

= H(C) + Ec∼C,m∼M(c) log p(c|m)

Given that the training episodes are gen-
erated independent of the object specifica-
tions, H(C) can be assumed to be con-
stant. We approximate the last term using
Jensen’s inequality

(
Ec∼C,m∼M(c)

[
log p(c|m)

]
≥

4Inspired by machine translation works (Tu et al., 2016),
we define coverage as a mapping from a particular concept
element to its appropriate message element. Full coverage
refers to a distinct mapping of the whole concept input to
corresponding symbols in M.

Ec∼C,m∼M(c)

[
log qφ(c|m)

])
to obtain a lower

bound for I(C,M). Here, qφ(c|m) is a learned dis-
criminator module which takes the (concatenated)
messages and tries to predict the concept labels
(i.e. elements of 〈VERB, {ADJi}3i=1,NOUN〉)
andEc∼C,m∼M(c) log qφ(c|m) is its negative cross-
entropy loss. The final intrinsic reward is:

I(C,M) ≥ H(C) + Ec∼C,m∼M(c) log qφ(c|m)
(1)

Intuitively, it suggests that it should be easy to in-
fer the concepts from the messages. Conversely, the
confusion (high error) arising from the speaker’s
inability to express concepts will lead to lower re-
wards. Note, that the reward will be highest when
the conditions of full coverage and one-to-one map-
ping are satisfied (the discriminator will then be
able to predict all the concept elements with high
probability). We add the I(C,M) reward at the last
step of the episode, given as: r[−1] + λ1I(C,M),
where λ1 is a tunable hyperparameter. The dis-
criminator qφ is periodically trained using batches
sampled from a memory buffer, where we store the
pair 〈ci,mi〉. Note, that we block the discriminator
gradients to the speaker and use it merely as an
auxiliary means to provide intrinsic feedback.

Speaker Abandoning Existing works (Lowe
et al., 2019) have shown that while training RL-
agents augmented with a communication channel,
it is likely that the speaker fails to influence the lis-
tener’s actions. To address this, we propose to add
another intrinsic reward to maximize the mutual
information between the speaker’s messages and
the listener’s actions, given the grid information.

At each step, we simulate k intermediate steps to
sample pseudo messages m̃ from the message dis-
tributionM. Together with the original message
m, we compute two sets of probability values corre-
sponding to actions of the listener: (i) π(at|m,Gt)
which is the listener’s policy conditioned on both
the messages and the output of the grid encoder



Gt; (ii) p(at|Gt) or the probability distribution over
the listener’s actions conditioned on just the output
of the grid encoder. We then calculate the mutual
information for each step as follows:

I(at,m|Gt) =
∑
at,m

p(at,m|Gt) log
p(at,m|Gt)

p(at|Gt)p(m|Gt)

=
∑
at,m

p(m|Gt)p(at|m,Gt) log
p(at|m,Gt)

p(at|Gt)

= Em∼M[DKL(p(at|m,Gt)||p(at|Gt))]

Note that p(m|Gt) = p(m) since mes-
sages and grid-view are independently pro-
cessed. Here p(at|Gt) is obtained by marginaliz-
ing over the joint probability distribution, given
as,
∑

m̃ p(at, m̃|Gt) =
∑

m̃ p(at|m̃,Gt)p(m). We
use Monte Carlo approximation to replace the Ex-
pectation by sampling messages fromM. The final
reward equation for k pseudo-steps is given as:

I(at,m|Gt)

=
1

k

∑
m

DKL

[
π(at|m,Gt)||

∑
m̃

π(at|m̃,Gt)p(m)
]

(2)

Maximizing Equation 2 leads to a higher speaker
influence on the listener’s actions. The net reward
at each step is given as: rt + λ3I(at,m|Gt), where
λ3 is a tunable hyperparameter.

4 Experiments

Zero-Shot Generalization Splits: (i) Visual
split: All episodes not containing the ‘red square’
as a target object, were used for training the model.
During evaluation, we examine whether the trained
model can generalize to the following instructions:
walk to a red square; push/pull a red square. (ii)
Numeral split: The training set contains instruc-
tions with Push, Push Twice and Pull, whereas,
test set contains Pull Twice task. Here the modifier
Twice is used to denote a heavier object i.e., lis-
tener should execute two consecutive ‘pull’ actions
to move the object. The listener must infer from
its training that a symbol corresponding to heavy
requires twice as many actions.

Baselines: We compare our Intrinsic Speaker
model with the following baselines. (i) Oracle
Listener: For each cell, we zero-pad the grid en-
coding with an extra bit, and set it (= 1) for the cell
containing the target object. This way, the listener
has complete information about the target in con-
text of the distractors. We use this baseline as our
upper limit of performance. (ii) Perfect Speaker:
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Figure 3: [Best viewed in color] Left: Comparison of Intrin-
sic Speaker with other baselines on a single policy module for
WALK task. It can be observed that Intrinsic Speaker performs
as well as the Perfect Speaker baseline; Right: Comparison
of topsim metric of Intrinsic Speaker (with and without feed-
back) and Simple Speaker. All plots have been obtained by
averaging the validation rewards obtained over 5 independent
runs. [X-axis: 1 unit = 50 episodes]

Task Model Zero-Shot
Accuracy

walk to a red square
(visual split)

Simple Speaker 73.43%

Intrinsic Speaker 80.24%

push a red square
(visual split)

Simple Speaker 67.17%

Intrinsic Speaker 72.45%

pull a red square
(visual split)

Simple Speaker 66.80%

Intrinsic Speaker 73.29%

pull a red square twice
(numeral split)

Simple Speaker 65.25%

Intrinsic Speaker 69.77%

Table 1: Comparison of simple speaker and intrinsic speaker
zero-shot performance on different splits.

The speaker uses an Identity matrix that channels
the input directly to the listener. Thus, it is per-
fectly compositional. (iii) Simple Speaker: Here
the speaker-listener is trained end-to-end without
using the intrinsic rewards.

5 Results

(i) The proposed Intrinsic Speaker outperforms the
Simple Speaker in terms of both, convergence re-
wards and topsim score (Figure 3). In fact, the
Intrinsic Speaker matches the performance of the
Perfect Speaker, thus, showing that the emergent
communication is highly compositional (≈ 0.9).
(ii) The zero-shot generalization accuracy in Ta-
ble 1 shows that the Intrinsic Speaker consistently
outperforms the Simple Speaker on both splits. (iii)
In order to test the effectiveness of intrinsic re-
wards in inducing compositionality, we trained the
Intrinsic Speaker with no external reward from the
environment. As shown in Fig 3 (right), the in-
trinsic rewards were alone capable of generating a
topsim score ≈ 0.6. For further details, the readers
are requested to refer the paper (Hazra et al., 2020).
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