
Learning a natural-language to LTL
executable semantic parser for grounded robotics

Christopher Wang
MIT CSAIL & CBMM
czw@mit.edu

Candace Ross
MIT CSAIL & CBMM
ccross@mit.edu

Yen-Ling Kuo
MIT CSAIL & CBMM
ylkuo@mit.edu

Boris Katz
MIT CSAIL & CBMM
boris@mit.edu

Andrei Barbu
MIT CSAIL & CBMM
abarbu@mit.edu

Abstract: Children acquire their native language with apparent ease by observing
how language is used in context and attempting to use it themselves. They do so
without laborious annotations, negative examples, or even direct corrections. We
take a step toward robots that can do the same by training a grounded semantic
parser, which discovers latent linguistic representations that can be used for the
execution of natural-language commands. In particular, we focus on the difficult
domain of commands with a temporal aspect, whose semantics we capture with
Linear Temporal Logic, LTL. Our parser is trained with pairs of sentences and exe-
cutions as well as an executor. At training time, the parser hypothesizes a meaning
representation for the input as a formula in LTL. Three competing pressures allow
the parser to discover meaning from language. First, any hypothesized meaning for
a sentence must be permissive enough to reflect all the annotated execution trajecto-
ries. Second, the executor — a pretrained end-to-end LTL planner — must find that
the observed trajectories are likely executions of the meaning. Finally, a generator,
which reconstructs the original input, encourages the model to find representations
that conserve knowledge about the command. Together these ensure that the mean-
ing is neither too general nor too specific. Our model generalizes well, being able
to parse and execute both machine-generated and human-generated commands,
with near-equal accuracy, despite the fact that the human-generated sentences are
much more varied and complex with an open lexicon. The approach presented here
is not specific to LTL: it can be applied to any domain where sentence meanings
can be hypothesized and an executor can verify these meanings, thus opening the
door to many applications for robotic agents.

Keywords: LTL, semantic parsing, weak supervision

1 Introduction

Natural language has the potential to be the most effective and convenient way to issue commands to
a robot. However, machine acquisition of language is difficult due to the context- and speaker-specific
variations that exist in natural language. For instance, English usage differs widely throughout the
world: between children and adults, and in businesses vs. in homes. This does not pose a significant
challenge to human listeners because we acquire language by observing how others use it and then
attempting to use it ourselves. Upon observing the language use of other humans, we discover the
latent structure of the language being spoken. We develop a similar approach for machines.

Our grounded semantic parser learns the latent structure of natural language utterances. This
knowledge is executable and can be used by a planner to run commands. The parser only observes
how language is used: what was said i.e., the command, and what was done in response i.e., a
trajectory in the configuration space of an agent. We provide two additional resources to the parser,
which children also have access to. First, we build in an inductive bias for a particular logic, in our

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.



Figure 1: (left) The paradigm for training the parser is shown on the left. Given an input sentence,
the parser proposes an LTL formula, z, that could encode the meaning of that sentence. That formula
is executed by a robotic agent to estimate the likelihood of the observed behavior, E, given the
interpretation of the sentence, i.e., determining whether many more efficient approaches to executing
this formula might exist. This likelihood is used to compute the reward R(z, E). At the same time,
a generator attempts to reconstruct the sentence. (right) An example of the planner in action. We
use the planner described by Kuo et al. [3] which learns to execute LTL formulas end-to-end from
images to actions. Each predicate, ORANGE and TREE here, and each operator, are neural networks
which together output an action that the robot should take given the current state of the world. Not
shown are recurrent connections that enable each component to keep track of execution progress.

case Linear Temporal Logic (LTL) over finite sequences. We believe this is a reasonable starting
place for our model, since it is widely assumed that priors over possible languages are built in by
evolution and are critical to human language learning [1]. Second, we provide feedback from an
executor: a planner trained end-to-end that is capable of executing formulas in whatever formalism
we use in the prior, in our case LTL. With only this knowledge, our grounded semantic parser learns
to turn sentences into LTL formulas and to execute those formulas.

The parser strives to find an explanation for what a sentence might mean by hypothesizing potential
meanings and then updating its parameters depending on how suitable those meanings were. Four
sources of information combine together to inform the semantic parser and are woven together into a
single loss function. First, all outputs are verified to be syntactically, but not semantically valid LTL
formulas, i.e., only valid LTL formulas are accepted. Second, the parser aims to create interpretations
that are generic enough and whose LTL formulas actually admit the behavior that was observed.
Third, given an interpretation of a sentence, the executor validates that the observed behavior is
rational, i.e., has a high likelihood conditioned on that interpretation. Fourth, a generator attempts to
reconstruct the input to maximize the knowledge conserved when translating sentences into some
formalism. We do not provide any LTL-specific or domain-specific knowledge.

Our approach performs well on both machine and human generated sentences. In both cases, it is
able to execute around 80% of commands successfully. A traditional fully-supervised approach on
the machine-generated sentences outperforms ours with 95% accuracy, but requires the ground-truth
LTL formulas. Where this approach of discovering latent structures shines is on real-world data. We
asked human subjects, unconnected with this research and without knowledge of robotics or ML, to
produce sentences that describe the behavior of robots. This behavior was produced according to an
LTL formula that we randomly generated, but the humans were free to describe whatever they wanted
with whatever words they desired as long as it was true. Despite the human sentences being much
more varied and complex, including structures which our formalism cannot exactly represent, our
method still finds whatever latent structure is present and required to execute the natural-language
commands produced by humans with nearly the same accuracy as those produced by machines.

Executing LTL commands and understanding the kinds of temporal relations that require LTL is
particularly difficult due to the richness and openness of natural language [2]. But LTL is just a
stepping stone. It remains an important open question in grounded robotics: what representation will
be enough to capture the richness of how humans use language? For instance, notions such as modal
operators to reason about hypothetical futures will likely be required, but what else is unclear. Having
a general-purpose mechanism for learning to execute commands is extremely helpful under these
conditions; we can experiment with different logics and domains with the same agents by changing
the priors and planners while leaving the rest of the system intact.

2



Figure 2: Execution tracks for the command “Always take the pear and go to the tree and stay there.”

The main contributions of this work are:

1. a semantic parser that maps natural language to LTL formulas trained without access to any
annotated formulas — no annotations were even collected for human-generated commands,

2. a variant of Craft by Andreas et al. [4] suited for grounded semantic parsing experiments,
and

3. a recipe for creating grounded semantic parsers for new domains that results in executable
knowledge without annotations for those domains.

2 Related Work

Semantic parsing Early attempts at semantic parsing, such as the famous SHRDLU system [5],
were rule-based language systems. Later, advances in statistical language modeling gave rise to
grammar-based approaches that were trained on full supervision [6, 7]. Recent approaches have
focused on training grounded semantic parsers using weak supervision. The work of [8, 9, 10, 11]
trains a language model on a dataset of question-answer pairs to produce queries in a formal language.
The approaches of [12, 13] present a planner and CCG-based parser to generate programs for a
deterministic robotic simulator. However, in these approaches, it is not clear whether constraints on
behavior across time are learned, because the tasks do not require this knowledge and the formalisms
used cannot easily represent such concepts. Ross et al. [14] use videos to supervise a grounded
semantic parser. Although the videos contain information about events across time, the predicate
logic used in [14] does not contain the operators necessary to represent the constraints that we focus
on in this work. Nor did that work result in executable knowledge, i.e., plans that could drive a robot,
merely descriptions of videos and actions. The semantic parsing literature is relatively sparse on the
topic of time and temporal relations; for example Lee et al. [15] parse natural-language expressions
denoting relative times, in many ways a much easier task than parsing into LTL. Even among the
parsing approaches that do use the LTL formalism, many require a repository of general-purpose
templates [16, 17, 18, 19] and do not truly address unbounded natural language input.

Our work follows recent approaches that cast the problem of semantic parsing as a machine translation
task. Instead of using chart parsers, as is typical for grammar-based approaches [12, 14, 13], we
use an encoder-decoder sequence-to-sequence model where the input and output are sequences of
tokens: in our case, natural language commands and LTL formulas, respectively. Attempts to train
sequence models using weak supervision usually warm start the model by pre-training with full
supervision [20, 21]. By contrast, we train our model from scratch using a relatively small set of
command-execution pairs. This is difficult in the initial stages of training due to the large exploration
space. To address these challenges, we follow Guu et al. [22] and Liang et al. [9] in using randomized
search with a search space restricted to formulas that are syntactically valid in a target logic, LTL.

Planning Closely related to our task is the work that has been devoted to mapping LTL formulas to
execution sequences [23, 24, 25]. Kuo et al. [3] presents a compositional neural network that learns
to map LTL formulas to action sequences. It can also compute the likelihood of a sequence of actions
conditioned on a formula. We adopt this agent as the executor in this work and train it for our domain;
it never sees a single natural-language utterance, it merely learns how to execute LTL formulas.

Most relevant to our work, Patel et al. [26] trains a weakly supervised semantic parser for LTL
formulas. This work uses an algorithm that requires significant knowledge about LTL and is entirely
LTL-specific, while here we merely reject syntactically invalid formulas. Their approach requires
access to the ground truth observations of the environment to execute LTL formulas step by step

3



while our approach takes as input images observed by the robot of its environment. Fundamentally,
their approach requires reasoning about locations and paths, while our approach includes object
interactions. No prior work or prior dataset includes a robot that can interact with objects, that
perceives its environment, and must understand natural-language commands that have a temporal
aspect to them and thus require LTL.

3 Model

Figure 1 (left) provides an overview of our model. Following one-to-many sequence-to-sequence
approaches for multi-task learning such as [27], our model consists of one encoder and two decoders.
A natural language input command, x, is first encoded to a high-dimensional feature vector then
separately decoded into the predicted LTL formula, ẑ, and reconstructed command, x̂. During
training, the planner assigns a reward, R(ẑ, E), to each hypothesized formula, ẑ. The training dataset,
D = {(x, E)}, contains pairs of natural language commands x and execution demonstrations E.
Each demonstration, E, consists of k trajectory-environment pairs E = {yk, ek}ki=1, see Figure 2. A
trajectory is a sequence of actions e.g., y = [left, left, up, grab].

3.1 Parser and Generator

Our architecture is similar to the sequence-to-sequence models of Guu et al. [22] and Dong and Lapata
[28]. Given input sentence x, our model defines a probability for an output formula z = [z1, ..., zm]:

p (z | x) =
|z|∏
i=1

p (zi | z<i,x; θparse) (1)

where θparse are the parser parameters.

Encoder The encoder is a stacked bi-directional LSTM that takes word embeddings as produced
by the pretrained English GloVe model [29]. The encoder maps the input [x1, ..., xn] to a feature
representation h = [h1, ..., hn].

Parser-Decoder The parser decoder takes the feature vector from the encoder and generates a
sequence of tokens: the LTL formula ẑ = [z1, ..., zm]. The decoder is a stacked LSTM with an
attention mechanism [30], as implemented by Bastings [31]. Dropout is applied before the final
softmax.

At each step, the attention mechanism produces a context vector ci from the decoder hidden state si
and h. The previous decoder input zi−1, along with ci and si, are used to produce a distribution over
output tokens:

p(zi | z<i,x; θparse) = Softmax(Wo[zi−1; ci;hi]) (2)

We keep a stack of generated tokens and output LTL formulas in post-order, since all operators in
LTL have a fixed arity. This allows us to avoid the problem of parentheses matching. We condition
the decoder to sample syntactically-valid continuations of the formula being decoded. Note that this
assumes nothing about the formula’s meaning. We simply build in the fact that certain continuations
are trivially guaranteed to never be syntactically valid; for example, the formula ∧∧ is not a valid
LTL formula. Practically, this property is trivially computable since LTL formulas, and virtually all
logics in general, use notation that is context-free, which allows us to remove invalid options from
the softmax output before sampling the next token. Following Guu et al. [22], we use ε-randomized
sample decoding for better exploration during training. At each timestep i, with probability p = ε,
we draw the next token zi according to p(zi | z<i,x; θparse). With probability p = 1− ε, we pick a
valid continuation uniformly at random.

Generator-Decoder The parser-decoder produces formulas which are scored by the planner, but
this does not ensure that the full content of the utterance is reflected in the parse. To encourage
this, we include a second, separate decoder, which is trained to reconstruct the original natural
language command, x, from the feature representation [h1, ..., hn]. This is a standard multi-task
learning approach that is often used in the literature to improve generalization. The architecture of
this component is identical to the parser-decoder.

4



Constituents Description
Logical operators ∧, ∨ And, or
Temporal operators �, 3, U Eventually, always, until
Objects APPLE, ORANGE, PEAR Objects that can be held
Relations CLOSER APPLE, CLOSER ORANGE, CLOSER PEAR Spatial relations
Destinations FLAG, HOUSE, TREE Destinations

Table 1: The various constituents of our target formalism are shown above. We ground the meaning
of natural-language sentences produced by humans into LTLf ([32]) without negation. Predicates
from the Craft domain are renamed as users found these labels easier to understand. Note that this
is the size of the target formalism; it is unrelated to the complexity of the input. Humans produced
sentences that contained 266 words across them which had to be grounded to these semantics.

Planner Formulas are scored using a planner. We adopt the one described by Kuo et al. [3] because
it learns to execute LTL formulas end to end and is pretrained for the CRAFT environment that
we evaluate on. Given a formula and an environment, the planner is trained to create an execution
sequence; it never has access to the natural language utterance. It learns to extract features from
images of the environment around the robot and acquires knowledge about LTL predicates and
operators in order to execute novel formulas in novel environments. Figure 1 (right) shows an
example of the planner configured to execute an LTL formula. Given an LTL formula, the planner is
configured by assembling a compositional recurrent network specific to that formula; it then guides
the robot to execute the formula. This compositionality enables zero-shot generalization to new
formulas. Any planner could in principle be used as long as it could learn to execute formulas for the
target domain and if it could score an arbitrary trajectory against a formula.

The planner does not have access to the ground truth environment. Instead, it observes an image of a
5× 5 patch of the world around it, which is passed through a learned feature extractor CNN. At every
time step, each module within the planner takes as input the features extracted from the surroundings
of the robot, the previous state of that module, and the previous state of the parent. The state of the
root of the LTL formula, according to an arbitrary but consistent parse of the formula, is decoded to
predict a distribution over actions. The model is pretrained on randomly generated environments and
LTL formulas using A2C, an Advantage Actor-Critic algorithm [33, 34].

4 Training

The model described above produces a candidate LTL formula ẑ, along with a reconstruction of the
input, x̂. Each candidate formula is used to compute a reward that incorporates the likelihood, as
computed by the planner, of the observed trajectories given the hypothesized LTL formula. This plays
two roles: first it ensures that the observed trajectories are actually feasible given the hypothesized
LTL formula; otherwise they will have zero likelihood. Secondly, it provides a score for how rational
the planner judges the behavior to be. Not all feasible paths are equally rational, and so by extension
not equally likely. For example, a complex observed trajectory is unlikely to be the consequence of a
simple command: it is more likely that the parser is producing an overly broad interpretation rather
than the observed trajectory going out of its way to do something unnecessary. The reward is then

R(ẑ, E) =

{
1
k

∑
(ei,yi)

1
|yi|

∑
j p(yi,j | ẑ,yi,<j , e) ∀y ∈ Y.y ∈ â

0 otherwise
(3)

where â is an NFA representation of the formula ẑ, so that y ∈ â indicates that y is feasible. We opti-
mize the reward of the output with either REINFORCE [35] or Iterative Maximum Likelihood (IML).
This reward computes an average of the likelihood over the k execution traces in E, conditioned on
the candidate formula ẑ (recall that each sentence is paired with k demonstration trajectories, each in
a different randomly-generated environment). Since the size of the search space for LTL formulas
grows exponentially in the length of the formula, we employ curriculum learning as in Liang et al.
[9]. Every 10 epochs, we increase the maximum length of the predicted formulas by 3.

5



4.1 Reinforcement Learning

In the reinforcement learning setting, our objective is to maximize the expected reward, marginalizing
over the space of possible formulas: JRL =

∑
x

∑
zR(z)pθ (ẑ | x). We use the REINFORCE

algorithm [35] to learn the policy parameters with Monte-Carlo sampling. For better exploration, we
use ε-dithering when sampling as described in 3.1. To incorporate the generator, we optimize a linear
combination of this reward and the reconstruction loss, JGEN = −

∑
x log p(x | x; θGEN ), so that

J = JRL + αJGEN . We adjust α at training time to balance the two components. In particular, it is
important to start with a small α initially, since JRL is small when θ is untrained and few candidate
formulas have non-zero reward.

4.2 Iterative Maximum Likelihood

Iterative Maximum Likelihood, IML has proven itself to be as efficient if not more efficient when
acquiring semantic parsers compared to RL. We adopt a method similar to that of [9] and [11]. First,
we explore the output space by sampling K formulas from the parser. We keep the highest reward
formulas ẑ∗ and use them as a pseudo-gold. We then maximize the likelihood of the pseudo-gold
formulas over the course of 10 epochs: JIML =

∑
x

∑
i log p(ẑ

∗
i | x; θparse). To incorporate the

generator, we again combine the two objective functions, but this time no scaling parameter is
required: J = JIML + JGEN . Sampling and MLE steps are then iterated.

5 Experiments

We test the parser in two experiments. The first verifies that machine-generated natural-language
commands derived from LTL formulas can be understood and followed by a trained agent in a way
that reflects the formula correctly. The second verifies that our model can 1) understand sentences
produced by humans which describe a given behavior and 2) express a plan in LTL that will result
in this behavior. Note that the humans never see the LTL formulas; they produce natural language
descriptions for the behavior of robots.

In all cases, our model has the same hyperparameters. The stacked LSTMs all have two layers with
hidden dimensions of size 1000 and dropout probability 0.2. We use Adam with learning rate 1e− 3.
REINFORCE and IML both sample 128 formulas to compute the expectation and generate sentences
for the next iteration with ε = 0.15 when exploring. We train using k = 3 trajectories for 50 epochs.
Results are reported for the model with highest validation set performance as measured by the Exec
metric, see section 5.1. At test time, we decode using a beam search with width 10.

Temporal Phenomena Most randomly generated LTL formulas are uninteresting, similar to the
way in which most instances of the boolean satisfiability problem SAT are uninteresting [36]. To
avoid such issues, we adopt the standard classification of LTL formulas produced by Manna and
Pnueli [37] and generate formulas in their six partially-overlapping categories: safety, guarantee,
persistence, recurrence, obligation, and reactivity. Respectively, safety, guarantee, persistence, and
recurrence, ensure that a property will always hold, will hold at least once, will always hold after a
certain point, or will hold at repeated points in time. Obligation and reactivity are compound classes
formed by unrestricted boolean combinations of the safety and recurrence classes respectively. While
we adopt the LTL over finite sequences, LTLf as described by De Giacomo and Vardi [32], the target
formalism uses the 3 eventually and � always temporal operators rather than © next to readily
generate instances of the Manna and Pnueli [37] classes. Since we found humans to be very unlikely
to spontaneously generate sentences that required negation, it was not included. The components of
the target formalism are shown in section 3.1.

Mechanical dataset We collect two sets of data. The first, a mechanically-generated dataset,
consists of 1,000 natural language sentences paired with 3,000 execution traces, 3 per example, with
a 70/15/15 training/val/test split. All commands and environments are given in the context of the
Minecraft-like CRAFT environment, which we adapt from Andreas et al. [4] and Kuo et al. [3].

Following Jia and Liang [38] and Goldman et al. [20], we generate sentences and formulas by
randomly and uniformly sampling productions and terminals from a synchronous context-free
grammar (Appendix A).

6



# Total sentences 2,000

# Machine sentences 1,000
# Guarantee 204
# Safety 264
# Recurrence 243
# Persistence 214
# Obligation 52
# Reactivity 23
Avg. words/sent. 17.7 ± 8.4
# Lexicon size 44

# Human sentences 1,000
Avg. words/formula 5.2 ± 2.9
Avg. words/sent. 8.3 ± 3.3
# Lexicon size 266

Table 2: Dataset statistics. Note that the
human-generated data is far more varied
with a much larger lexicon.

For each command-formula pair, we populate three 7x7
grid environments with objects and landmarks. Each en-
vironment includes all the items and landmarks in the cor-
responding command in random locations. Other objects
and landmarks that are not in the command are each in-
cluded with probability 0.3, resulting in somewhat densely
populated environments. Of course, this does not guar-
antee that a command can be executed on a particular
map.

Given the formula, we generate a non-deterministic finite
state automaton using Spot [39]. An oracle brute-force
searches the action space and generates an action sequence
which the automaton accepts; this can be quite slow. Re-
jection sampling over this process results in three environ-
ments for each command-formula pair. LTL with finite
semantics [40, 32] requires a time horizon: we set it at 20
steps, by which point the command must be satisfied, or
equivalently, the automaton must be in an accepting state.

Some commands mandate that a condition hold globally, e.g., “Always hold the gem”. However,
unless the agent’s initial state satisfies this condition, e.g., the robot happens to start with the gem in
hand, no satisfying action sequence is possible. To address this, we allow the robot time to approach
and grab the object, which is surely the intent of any human speaker, replacing each predicate p
with closer(p) U p, where closer(p) means “closer to p”. That is, instead of requiring that p be
satisfied immediately and always, we mandate that the robot move closer to p until p is satisfied.

Human-generated dataset We take all sampled environments from the mechanical dataset and
present them to humans. Note that humans only see what the robots do, not why they did it. They do
not see the LTL formulas or the machine-generated utterances. We asked six human annotators, who
were working for pay, unconnected to this research, and unfamiliar with NLP or robotics, to describe
what the robots are doing. Of course, this leads to different sentences than those that originally
generated the behavior of the robots.

This process ensures that even though our mechanical dataset was generated from a context free
grammar, no trace of that grammar remains; humans generate the sentences they are comfortable
with. The distractor objects and landmarks were not removed for this experiment, giving annotators
the opportunity to refer to them. The target object and the intended actions need never appear in the
final human descriptions. We did not collect LTL formulas from the human annotators. Note that
the size of the lexicon, 266 words, that the humans used is far larger than both what our formalism
supports and what was produced by the machines.

5.1 Results

Results are shown in table 3. The machine-generated data is annotated with ground truth LTL
formulas, but no equivalent concept exists for the human-generated dataset, since the humans only
had to explain what they thought the robots were doing; it might not even be possible to fully capture
the semantics of their sentences by LTL. Exec measures the fraction of formulas that accept all k
execution traces. This is an overestimate of the performance of the grounded parser; merely accepting
formulas does not guarantee any understanding. Plan measures the fraction of the environments that
the planner executes correctly on, given the predicted formula as input. This is an underestimate of
the performance of the grounded parser; even a human controlling a robot in such environments may
not exactly carry out the expected actions, since many formulas are hard to interpret and there is much
opportunity for error. As is common in linguistics, no single metric perfectly captures performance,
but these two metrics do bracket the performance of the approach.

A more stringent metric would be to investigate how the annotated and predicted LTL formulas
compare, which is possible on the machine-generated dataset. Exact measures the fraction of
predicted formulas which are equivalent to the ground truth. Seq is the F1 token overlap score
between the predicted formula and the ground truth. These are extremely stringent metrics that even
humans would perform poorly on, as the same actions can be carried out for many different reasons

7



Machine-generated dataset

Exec Plan Seq Exact
Supervised 94.7 36.7 94.9 91.3

RL 82.0 41.3 22.9 8.7
RL + generator 83.3 41.3 23.9 8.7
IML 81.3 32.2 14.0 2.0
IML + generator 85.3 34.9 15.0 4.0

Human-generated dataset

Exec Plan
Random 16.3 17.5

RL 78.7 40.7
RL + generator 79.3 43.3
IML 80.0 28.7
IML + generator 83.3 31.8

Table 3: Results on the machine-generated (left) and the human-generated (right) datasets. Exec
measures the likelihood of formulas that recognize the ground truth trajectories, an overestimate of
the real performance of the parser. Plan measures how often the planner produced a correct trajectory
given the predicted formula, an underestimate of the real performance. Seq and Exact measure the
overlap between predicted and ground-truth LTL formulas; note that many formulas have identical
semantics, even humans may do poorly on this metric. The fully-supervised method outperforms our
approach, as expected, but it is only relevant for the machine dataset where ground-truth annotations
exist. Note that the drop between the machine- and human-generated datasets is small, despite the
human sentences being more diverse.

and many LTL formulas are equivalent in context. Typical mistakes made when predicting the exact
formula on the machine-generated dataset are shown on the right in table 4.

Input Either grab the apple or the
pear and hold them forever.

Target �3FLAG ∧�3ORANGE
RL+gen �3(�3FLAG ∨3ORANGE)
IML+gen �3(FLAG ∨ ORANGE)

Table 4: Predicted output for the
machine-generated test set showing typ-
ical mistakes. These formulas are hard
to tell apart from observations of the
robot’s behavior. This makes it harder
to learn the correct form while at the
same time encouraging correct execu-
tions (See Appendices B and C).

Overall, the supervised method outperforms our method,
but when considering the percentage of correctly executed
formulas, it only outperforms the weakly-supervised ap-
proach by 5-10%. Both RL and IML performed well, with
the generator increasing performance by 1-4%. Overall,
IML with the generator was the highest performing ap-
proach and recovers almost all the performance of the
supervised approach.

We investigated how performance varied as we provided
more examples per sentence using the machine-generated
data. While the fraction of correctly executed sentences
stays roughly the same, the exact match goes up signifi-
cantly from 2% at k = 3 to 14% at k = 7. The ambiguity
in this domain prevents exact matches, but allows for good executions.

On the human-generated dataset, despite the fact that the formalism we use is small compared to the
266 words that humans used, the grounded parser is able to understand most commands. It correctly
executes in about 43% of the environments and accepts about 80% of commands.

6 Conclusion

We created a grounded semantic parser that, given only minimal knowledge about its environment and
formalism, was able to discover the structure of an input language and produce executable formulas
to command a robot. Its performance is competitive with a state of the art supervised approach, even
though we provide no direct supervision. We were able to get similar performance on a challenging
dataset produced by humans that could use any word and sentence construction to describe the actions
of robots, even those that our formalism cannot completely capture. This model has virtually no
knowledge of its domain or target logical formalism; it merely requires a planner and a method to
reject syntactically invalid formulas. Many problems in robotics and NLP could be tackled by such an
approach because of its low requirements for annotations. For example, data already exists to guide
agents to reproduce the actions of customer service agents in response to queries. And in the robotic
domain, future work might involve observing what humans say to one another and then acquiring
a domain-specific semantic parser to guide robots on a worksite for example. Being able to adapt
to variations in language use and to changes in the environment is crucial to building useful robots,
because the same language may carry very different meanings in different contexts. In the long term,
we hope that this line of research leads both to robots that understand us and to robotic systems that
can be used to probe how children acquire language, bringing robotics and linguistics closer together.

8



Acknowledgments

This work was supported by the Center for Brains, Minds and Machines, NSF STC award 1231216,
the Toyota Research Institute, the MIT CSAIL Systems that Learn Initiative, the DARPA GAILA
program, the United States Air Force Research Laboratory under Cooperative Agreement Number
FA8750-19-2-1000, and the Office of Naval Research under Award Number N00014-20-1-2589 and
Award Number N00014-20-1-2643. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation herein.

References
[1] N. Chomsky. Approaching UG from below. In U. Sauerland and H.-M. Gärtner, editors, Interfaces +

Recursion = Language?, pages 1–29. Mouton de Gruyter, NY, 2007.
[2] A. Brunello, A. Montanari, and M. Reynolds. Synthesis of LTL formulas from natural language texts:

State of the art and research directions. In 26th International Symposium on Temporal Representation and
Reasoning (TIME 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[3] Y.-L. Kuo, B. Katz, and A. Barbu. Encoding formulas as deep networks: Reinforcement learning for
zero-shot execution of LTL formulas. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020.

[4] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy sketches. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 166–175. JMLR.
org, 2017.

[5] T. Winograd. Procedures as a representation for data in a computer program for understanding natural
language. Technical report, Massachusetts Institute of Technology Cambrdige Project MAC, 1971.

[6] J. M. Zelle and R. J. Mooney. Learning to parse database queries using inductive logic programming. In
Proceedings of the national conference on artificial intelligence,, page 1050–1055, 1996.

[7] L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured classification with
probabilistic categorial grammars. In UAI 2005 Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, 2005.

[8] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from question-answer pairs.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pages
1533–1544, 2013.

[9] C. Liang, J. Berant, Q. Le, K. Forbus, and N. Lao. Neural symbolic machines: Learning semantic parsers
on freebase with weak supervision. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 23–33, 2017.

[10] C. Liang, M. Norouzi, J. Berant, Q. V. Le, and N. Lao. Memory augmented policy optimization for
program synthesis and semantic parsing. In Advances in Neural Information Processing Systems, pages
9994–10006, 2018.

[11] R. Agarwal, C. Liang, D. Schuurmans, and M. Norouzi. Learning to generalize from sparse and underspec-
ified rewards. In International Conference on Machine Learning, pages 130–140, 2019.

[12] Y. Artzi and L. Zettlemoyer. Weakly supervised learning of semantic parsers for mapping instructions to
actions. Transactions of the Association for Computational Linguistics, 1:49–62, 2013.

[13] E. C. Williams, N. Gopalan, M. Rhee, and S. Tellex. Learning to parse natural language to grounded reward
functions with weak supervision. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1–7. IEEE, 2018.

[14] C. Ross, A. Barbu, Y. Berzak, B. Myanganbayar, and B. Katz. Grounding language acquisition by training
semantic parsers using captioned videos. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2647–2656, 2018.

[15] K. Lee, Y. Artzi, J. Dodge, and L. Zettlemoyer. Context-dependent semantic parsing for time expressions.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1437–1447. Association for Computational Linguistics, June 2014.

[16] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state verification.
In Proceedings of the 21st international conference on Software engineering, pages 411–420, 1999.

[17] V. Gruhn and R. Laue. Patterns for timed property specifications. Electronic Notes in Theoretical Computer
Science, 153(2):117–133, 2006.

[18] S. Konrad and B. H. Cheng. Real-time specification patterns. In Proceedings of the 27th international
conference on Software engineering, pages 372–381, 2005.

[19] A. P. Nikora and G. Balcom. Automated identification of LTL patterns in natural language requirements.
In 2009 20th International Symposium on Software Reliability Engineering, pages 185–194. IEEE, 2009.

9



[20] O. Goldman, V. Latcinnik, E. Nave, A. Globerson, and J. Berant. Weakly supervised semantic parsing
with abstract examples. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1809–1819. Association for Computational Linguistics, July
2018.

[21] L. Jehl, C. Lawrence, and S. Riezler. Learning neural sequence-to-sequence models from weak feedback
with bipolar ramp loss. Transactions of the Association for Computational Linguistics, 7:233–248, 2019.

[22] K. Guu, P. Pasupat, E. Liu, and P. Liang. From language to programs: Bridging reinforcement learning
and maximum marginal likelihood. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1051–1062, 2017.

[23] H. Sahni, S. Kumar, F. Tejani, and C. Isbell. Learning to compose skills. arXiv preprint arXiv:1711.11289,
2017.

[24] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. LTL and beyond: Formal
languages for reward function specification in reinforcement learning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, pages 6065–6073. International Joint
Conferences on Artificial Intelligence Organization, 7 2019.

[25] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe reinforcement learning
via shielding. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[26] R. Patel, R. Pavlick, and S. Tellex. Learning to ground language to temporal logical form. In NAACL 2019,
SpLU RoboNLP Workshop, 2019.

[27] D. Dong, H. Wu, W. He, D. Yu, and H. Wang. Multi-task learning for multiple language translation.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
1723–1732, 2015.

[28] L. Dong and M. Lapata. Language to logical form with neural attention. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33–43, 2016.

[29] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[30] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate.
In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[31] J. Bastings. The annotated encoder-decoder with attention, 2018.
[32] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic on finite traces. In

Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
[33] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement

learning with function approximation. In Advances in neural information processing systems, pages
1057–1063, 2000.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937, 2016.

[35] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

[36] S. Horie and O. Watanabe. Hard instance generation for sat. In International Symposium on Algorithms
and Computation, pages 22–31. Springer, 1997.

[37] Z. Manna and A. Pnueli. A hierarchy of temporal properties (invited paper, 1989). In Proceedings of
the Ninth Annual ACM Symposium on Principles of Distributed Computing, PODC ’90, page 377–410.
Association for Computing Machinery, 1990. ISBN 089791404X.

[38] R. Jia and P. Liang. Data recombination for neural semantic parsing. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12–22.
Association for Computational Linguistics, Aug. 2016.

[39] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. Spot 2.0—a framework for
LTL and ω-automata manipulation. In International Symposium on Automated Technology for Verification
and Analysis, pages 122–129. Springer, 2016.

[40] S. Dutta and M. Y. Vardi. Assertion-based flow monitoring of systemc models. In 2014 Twelfth ACM/IEEE
Conference on Formal Methods and Models for Codesign (MEMOCODE), pages 145–154. IEEE, 2014.

[41] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and A. van den
Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real
environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3674–3683, 2018.

10



A Grammar

The grammar used to produce our machine generated commands is shown below:

BINOP → ‘and’ | ‘or’
UOP → ‘do not’ | ‘you should not’
ITEM → ‘apple’ | ‘orange’ | ‘pear’

LANDMARK → ‘flag’ | ‘house’ | ‘tree’
PREDICATE → ‘be around the’ LANDMARK | ‘be near the’ LANDMARK

| ‘go to the’ LANDMARK | ‘hold the’ Item
| ‘take the’ ITEM | ‘possess the’ ITEM

P → PREDICATE | UOP PREDICATE | PREDICATE BINOP PREDICATE | UOP P
S → SAFETY | GUARANTEE | OBLIGATION | RECURRENCE |

| PERSISTENCE | REACTIVITY

SPREFIX → ‘always’ | ‘at all times,’
SSUFFIX → ‘forever’ | ‘at all times’ | ‘all the time’
SAFETY → SPREFIX P | P SSUFFIX | SAFETY BINOP SAFETY

GPREFIX → ‘eventually’ | ‘at some point’
NOTPREDICATE → UOP PREDICATE

GUARANTEE → GPREFIX P | ‘guarantee that you will’ PREDICATE

| ‘guarantee that you’NOTPREDICATE | GUARANTEE BINOP GUARANTEE

OBLIGATION → SAFETY BINOP GUARANTEE | OBLIGATION BINOP SAFETY

| OBLIGATION BINOP GUARANTEE

RECURRENCE → ‘eventually,’ P ‘and do this repeatedly’ | RECURRENCE BINOP RECURRENCE

PERSISTENCE → ‘at some point, start to’ P ‘and keep doing it’
| PERSISTENCE BINOP PERSISTENCE

REACTIVITY → RECURRENCE BINOP PERSISTENCE | REACTIVITY BINOP RECURRENCE

| REACTIVITY BINOP PERSISTENCE

11



B Sample output predictions

B.1 Grammar-generated sentences

Table 5: Predicted output on the best model parameters for the test set of the grammar-generated
commands

Input eventually, be around the tree or go to the flag and do this repeatedly
Target (�♦(( TREE ) ∨ ( FLAG )))
RL+gen (�♦(( FLAG ) ∨ ( TREE )))
IML+gen (�♦((♦( TREE )) ∨ (�♦((�( TREE )) ∨ (�♦( FLAG ))))))

Input at some point, start to be around the house and go to the flag and keep doing it
Target (♦�(( HOUSE ) ∧ ( FLAG )))
RL+gen (�♦(( HOUSE ) ∨ ( FLAG )))
IML+gen (♦�((♦( HOUSE )) ∨ (�( FLAG ))))

Input at all times, possess the pear or be around the house and guarantee that you will go
to the tree

Target ((�(( PEAR ) ∨ ( HOUSE ))) ∧ (♦( TREE )))
RL+gen (�♦(( HOUSE ) ∨ ( TREE )))
IML+gen (�♦((�♦( PEAR )) ∨ (�♦((�♦( PEAR )) ∨ (�( PEAR ))))))

Input at some point, start to be around the house and possess the orange and keep doing it
Target (♦�(( HOUSE ) ∧ ( ORANGE )))
RL+gen (�♦( HOUSE ))
IML+gen (�♦((�♦( HOUSE )) ∨ (�♦((♦( HOUSE )) ∨ (�♦( HOUSE ))))))

B.2 Human-generated sentences

Table 6: Predicted output on the best model parameters for the test set of the human-generated
sentences

Input : get your hands on the orange or the apple some time.
RL+gen: (�♦( ORANGE ))
IML+gen: (�♦((♦((♦�( APPLE )) ∨ (♦( ORANGE )))) ∨ (�♦( TREE ))))

Input: guarantee that you snatch the pear
RL+gen: (�♦( PEAR ))
IML+gen: (�♦((�♦((♦( APPLE )) ∨ (�( TREE )))) ∨ (�♦( PEAR ))))

Input: guarantee that you approach the trash can and visit the tree
RL+gen: (�♦( TREE ))
IML+gen: (�♦((�♦((♦( TREE )) ∨ (♦( HOUSE )))) ∨ (�♦( TREE ))))

Input: ensure that you pick up the peach and then take it to the trash can
RL+gen: (�♦( ORANGE ))
IML+gen: (�♦((♦((�♦( ORANGE )) ∧ (�( ORANGE )))) ∨ (�( ORANGE ))))

C Qualitative failure analysis

From observing our predicted output, we see the limitations of our approach (Appendix B). While it
is encouraging to see that the model generally learns to produce the correct predicates, there are some
situational ambiguities that are hard to overcome by observing execution demonstrations. Namely,
it is difficult to distinguish eventually ♦ and always � by observing whether a formula accepts
the execution trajectories. For example, consider the input command always go to the tree and a
corresponding execution trace y. Then, a hypothesis such as ♦TREE i.e., eventually go to the tree,

12



will receive a non-zero reward, because it is able to accept the demonstration y. This is because a
trace that shows the robot always going to the tree must necessarily show the robot eventually going
to the tree. In general, the model can always receive a non-zero reward for proposing ♦ in a situation
which calls for �. In the same way, any commands involving disjunction are difficult to learn. That
is, the model can always receive a non-zero reward by proposing p ∨ q in a situation which requires
p ∧ q.

Avg. Reward
RL + gen 0.392
IML + gen 0.373
Ground truth 0.369

Table 7: The average rewards received
by the predicted formulas for the best
performing parameters on the machine-
generated data.

These ambiguities would not hinder training if the planner
always gave a higher likelihood to the correct formula.
But we find that this is not the case. Table 7 shows that on
average, the ground truth formula receives a lower reward
than the predicted formula, which indicates that further
efforts to maximize the score will not result in more accu-
rate parses. This problem is likely to become less severe if
future advances produce more accurate planners that place
higher likelihood on paths which more efficiently execute
a formula.

D Comparison to baselines

Figure 3: The baseline sequence-to-sequence architecture which encodes natural language into
a high dimensional embedding and then decodes the embedding into a distribution over actions.
The recurrent units that serve as the encoder and decoder are both stacked (n = 2) LSTMs with
hidden-size of 1000. A feature representation of the environment is extracted using a linear layer.

To determine the effectiveness of LTL as an intermediate representation, we compare to a simple
end-to-end language-to-action neural network model. We adapt the architecture from [41] as a
baseline for comparison (Figure 3). During training, the model takes a natural language command
as input and generates a sequence of actions. The loss is simply the likelihood of the ground truth
action sequence. We train on the same set of human- and machine-generated sentences as described
in Section 4. Teacher-forcing is used when decoding the sequences.

This baseline produces acceptable actions 22% of the time on our human-generated test set and 18.7%
of the time on machine-generated test set. These measures fall below our model’s performance of
41.3% and 43.3% respectively, as seen in the Plan columns of Table 3.

A comparison to a more sophisticated language-to-action planner, a variant of which serves as our
executor, can be obtained from [3], which finds the correct execution 50% of the time on the test set
in a related, but not identical, environment.

Outside of our model’s end-to-end performance, we note that the presence of any intermediate
representation is useful since it makes the behavior of the system as a whole more interpretable,
which is crucial in ensuring correctness. Moreover, learning a language-to-formalism mapping allows
us to generalize to different execution environments, whereas a language-to-action model is only
useful in the specific execution context for which it was trained.

13


	Introduction
	Related Work
	Model
	Parser and Generator

	Training
	Reinforcement Learning
	Iterative Maximum Likelihood

	Experiments
	Results

	Conclusion
	Grammar
	Sample output predictions
	Grammar-generated sentences
	Human-generated sentences

	Qualitative failure analysis
	Comparison to baselines

