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Abstract

This work introduces the Language-
Conditional Imitation Learning (L-CIL)
algorithm which auto-encodes input language
and learns a distribution of output actions
conditioned on the resulting context. We
test L-CIL in autonomous driving tasks. For
tasks seen during training, our method is on
par with the state-of-the-art in conditional
IL. More importantly, it largely outperforms
other conditional methods when tested on
an unseen task, likely generalizing due to
its use of language conditioning to discover
the proper similarity between train and test
sentences. We conclude that our research
may be stimulating to the field of Human-
Computer Interaction or robotics, where there
are continuing opportunities to explore the use
of language to generalize behavior.

1 Introduction

Imitation learning (IL) is one of the major tools
used in robotics and fields for which it is easier for
humans to convey information by showing what to
do rather than to express it on a different level of
generality. The simplest formulation assumes that
we present an agent with a set of state-action pairs
and hope it will learn how to approximate the func-
tion that generated this data, and thus, master the
general set of presented skills. Until recently, learn-
ing multiple behaviors at once was highly prob-
lematic, as information included in the state alone
was sometimes insufficient to elicit proper actions.
Conditional Imitation Learning, which made the
process of imitation learning to depend on addi-
tional data, solved that issue (Codevilla et al., 2018;
Chowdhuri et al., 2019; Mehta et al., 2018). It is
possible that the benefits would be even greater,
however, if there was a method that relied not only
on showing, but also on telling. Since language
is compositional (the meaning of an expression is
determined by its structure and the meaning of its

constituents), understanding a set of expressions en-
tails generalization: understanding similar expres-
sions. For artificial agents, however, the effects of
compositionality are unclear. The major motivation
for this study is thus to investigate generalization
with language in conditional imitation learning.

2 Background

2.1 Imitation learning via behavioral cloning

Imitation learning is the problem of finding a pol-
icy mimicking transitions provided in a dataset of
trajectories τi = [φ0, ..., φN−1]. In our case, tra-
jectories stand for sequences of observation-action
pairs, i.e. φi = (oi, ai) for oi ∈ O, ai ∈ A, i =
0, ..., N − 1.

One approach for solving imitation learning
problems is behavioral cloning (Pomerleau, 1991).
This term is used to describe all methods which
approximate mappings from the set of states to the
set of actions via supervised learning on imitation
data. Formally, for finding policy π∗ which gener-
ated demonstrations D = {(oi, ai)}Ni=0 we set up a
supervised regression problem of the form:

minimize
θ

∑
t

L (πθ(ot; θ), at) (1)

for ot, at ∈ D = {(oi, ai)}Ni=0, a function approx-
imator πθ defined with parameters θ, and a loss
function L.

2.2 Conditional Imitation Learning

The Conditional Imitation Learning (CIL) frame-
work tackles the assumption that proper behavior
can be inferred from the representation of the en-
vironment in which the expert is taking actions
(Codevilla et al., 2018). Codevilla et al. (2018)
suggest modelling latent information which addi-
tionally explains expert’s behavior by vector h and
expose the learner to this possibly over-complex



representation through command c = c(h). The
optimization problem then becomes:

minimize
θ

∑
t

L (πθ(ot, ct; θ), at) . (2)

The variable c could be an actual command is-
sued in natural language or a form of a signal asso-
ciated with some behavior (e.g. command “right”
or car’s blinking light can be both associated with
turning). The information carried by c enables the
method to distinguish between different behaviors
that occur in the same area of the environment’s
state-space, and at test time gives the possibility to
query it to perform them.

3 Related Work

Multiple works on imitation learning relate to our
method, e.g. (Ross et al., 2011; Babes et al., 2011;
Ho and Ermon, 2016; Duan et al., 2017; Dadashi
et al., 2020), but here we only discuss the most
relevant literature. A comprehensive overview can
be found in the author’s thesis (Skirzyński, 2020).

3.1 Imitation learning with conditioning

Prior work attempted learning a finite set of behav-
iors using a demonstration set that included all of
them. Codevilla et al. (2018) considered a branched
version of a feed-forward neural network where
context modulated which branch of the network
would be utilized to predict the action (steering
angle and acceleration). Technically, the authors
conditioned input data on one-hot encodings c(h)
which corresponded to behavior types h. Mehta
et al. (2018) enlarged the command vector with vi-
sual affordances – quantitative statistics computed
from the visual scene that served as the main in-
put to the learning algorithm. Affordances along
with action primitives were firstly used as auxiliary
tasks that needed to be computed based on the state
alone, and then their predictions c(h) conditioned
the action module of the network. Chowdhuri et al.
(2019) applied principles of conditioning to teach a
fleet of model cars to drive in different behavioral
modes. Information about the mode was encoded
in a form of a binary tensor c(h) that was concate-
nated with the current image of the environment
before being passed to an intermediate layer of a
convolutional neural network.

3.2 Instruction Following

Current methods to instruction following draw
from the successes of deep learning and apply con-
ditioning directly by computing language and state
representations end-to-end. Misra et al. (2017) ap-
plied LSTM layers to language input and along-
side a history of previous states and actions, con-
ditioned vanilla policy gradient algorithm (Sutton
and Barto, 2018) to perform the desired high-level
actions. Wang et al. (2019) encoded language with
LSTMs and multiplying it by attention matrices
conditioned an action module to take appropriate
actions. Their algorithm utilized standard reinforce-
ment learning (RL) mechanisms adding a reward
from a matching critic that computed alignment
between the command and the generated trajec-
tory. In Chen et al. (2019), the authors considered
language-conditioned image reconstruction prob-
lem to teach a robot navigation in real-life visual
urban environment. Instructions transformed into a
coherent representation by an LSTM network were
concatenated to the output of intermediate layers
within an encoder-decoder architecture. This data
was used to predict the distribution over the loca-
tion of a queried item. In Chaplot et al. (2018)
language was encoded and mixed with an input
image by a fusion model. Specifically, the authors
were using Gated-Attention units, and A3C algo-
rithm for policy learning (Mnih et al., 2016). For
more references, please see Luketina et al. (2019)
survey on language in RL.

4 Method

4.1 Overview

We call our algorithm Language-Conditional Imita-
tion Learning (L-CIL). The input to L-CIL con-
sists of a sum of N sets of M expert trajecto-
ries, each generated for a different behavior, and
N sets of K sentences describing these behav-
iors, K � M . Sentences are randomly assigned
to appropriate trajectories resulting in a dataset
D = {(ot, st, at)}Tt=1 of observation, descriptive
sentence and action triples.

Our algorithm starts by creating a language
model to represent words as vectors. It uses
word2vec (Mikolov et al., 2013) to construct rep-
resentations of words based on similarities be-
tween their neighborhoods. Sentences are then
turned into sequences of vectors obtained using
this technique. If vφ is a function approxima-



Figure 1: Network architecture for L-CIL1

tion for word2vec, and si = 〈w1
si , ..., w

lsi
si 〉 is a

sentence of length lsi then it is transformed into
vφ(si) := 〈vφ(w1

si), ..., vφ(w
lsi
si )〉. In consequence

D = {(ot, vφ(st), at)}Tt=1.

With this D the algorithm begins the optimiza-
tion process. Let O be the observation space, S
the discrete sentence space andA the actions space.
Additionally, let `a(x1, x2), `s(x1, x2) be loss func-
tions that compare actions and sentences represen-
tations, respectively, and let χi(x) denote a projec-
tion of vector x on its i-th dimension. Finally, let
F (·, ·; θ) be a mapping approximating transforma-
tion (ot, vφ(st)) 7→

θ
(at, vφ(st)) through parame-

ters θ, where ot ∈ O, at ∈ A, st ∈ S, t ∈ [T ]. In
mathematical terms, instead of using CIL’s objec-
tive from equation (2), the algorithm uses:

minimize
θ

∑
t

`a (χ1 (F (ot, vφ(st); θ)) , at)

+
∑
t

`s (χ2(F (ot, vφ(st); θ)), vφ(st)) .
(3)

4.2 Implementation

Mapping F is a composition of three modules: a
representation moduleR that maps input to context
vectors (ot, vφ(st)) 7→

θR
rt, a language decoder mod-

ule L that decodes the context to input sentence
rt 7→

θL
vφ(st) and an action module A that maps

the observation conditioned on the context to an
action (ot, rt) 7→

θA
at. All of the modules are func-

tion approximators whose parameters θR, θL, θA
make up θ. In this work, L-CIL was implemented
as a composition of a feed-forward neural network
and an autoencoder. Let ⊕ denote vector concate-
nation. The encoder network implemented the
representational module R and the decoder net-

1Image of the GRU taken from https://colah.github.io

work implemented the language module L. Feed-
forward layers operating on a concatenation of
o⊕ r, o ∈ O, r = R(o, vφ(s); θR) for some s ∈ S
implemented the action module A. The general
structure of L-CIL is depicted in Figure 1. The
particular structure of the autoencoder network
was based on uni-directional Gated Recurrent Unit
(Cho et al., 2014). Parameter-wise, `a was the MSE
loss and `s was the cross-entropy loss. All the
feed-forward layers were of size 128, whereas the
embedding layer had 32 dimensions. The encoder
network was frozen during training after reaching
the best encoding loss. A mini-batch contained
128 elements, the learning rate was set to 3e−5
and the weights were updated based on the Adam
optimizer. The training time was set to 100 epochs.

5 Experiments

5.1 Setup
We measured the efficacy of L-CIL in driving im-
itation tasks developed in the Monicar car simu-
lator2 that uses a 4-dimensional observation and
a 2-dimensional action space (Patel, 2019), both
continuous.We defined two disjoint collections of
behaviors there (see Figure 2), and by dividing
them between train and test sets, created 3 experi-
ments. For the Multi-confusion (MC) experiment
the train and the test set contained behaviors from
the multi-behavior collection (presented in red),
and checked whether a single method can learn
to replicate all of them only cued by the provided
sentences. For the Composite-confusion (CC) ex-
periment the train set and the test set contained
behaviors from the composite-behavior collection
(presented in blue), and checked the imitation ca-
pability of a method using behaviors with longer
trajectories. For the Composite-ambiguous (CA)
experiment the test set contained the ambiguous
behavior made out of partial trajectories for com-
posite behaviors (blue with yellow glow), and the
train set comprised behaviors from the composite-
behavior collection. Here, the algorithms were
expected to succeed only if enough information
was extracted from the context sentences enabling
a never-before-seen behavior to be executed.

The train and test sets (with 80 and 20 trajec-
tories, respectively) established according to the
above specification were generated using a hand-
made controller. Along with the trajectories we
created over 600 000 sentences that described the

2Named after its creator Monica Patel.



Figure 2: Map for the experiments
with sample trajectories.

Table 1: Mean error for different
experiments and algorithms.

Figure 3: Test sentence embed-
dings for EL-CIL and L-CIL.

behaviors, using a context-free grammar and a vo-
cabulary with 71 words. The length of the sen-
tences varied between 11 and 31. Although this
linguistic input did not allow free expression nor-
mally found in the speech, our setup is on par with
the most advanced studies on incorporating lan-
guage in reinforcement or imitation learning (see
the Background section). Therefore, our experi-
mentation is innovatory.

5.2 Quantitative results

We compared L-CIL against 3 baseline models: be-
havioral cloning (BC), CIL and EL-CIL, a version
of L-CIL that does not use the additional decoding
loss from equation (3). We expected that L-CIL
will be the only algorithm that allows generalizing
to new behaviors, and it’s performance in discrimi-
nating between seen behaviors will be reasonable,
but lower than CIL’s (due to the additional task of
decoding language vectors). Table 1 summarizes
the obtained results showing the mean action er-
ror attained at the end of the training. Firstly, we
see that L-CIL indeed exhibits generalization prop-
erties, as it gained a threefold improvement over
EL-CIL, and a nearly 30-fold improvement over
CIL in the Composite-ambiguous (CA) experi-
ment. Moreover, its performance almost matched
this for the standard discrimination tasks (MC and
CC experiments). Surprisingly, however, L-CIL
fell short to BC, and further studies are needed to
elucidate the reasons for this counter-intuitive re-
sult. Secondly, as expected, CIL was on average
the best method in the Confusion experiments, but
its performance did not surpass L-CIL’s by a large
margin. This confirmed that one-hot vectors differ-
entiate between behaviors the most accurately, but
vectors found by L-CIL are not too far off.

5.3 Language encoding analysis
A key enabler of our algorithm’s performance is
the quality of its encodings. Figure 3 shows T-SNE
plots for several sentences’ hidden representations
produced by EL-CIL and L-CIL and projected onto
a 2-dimensional plane. The embeddings are clus-
tered well in both cases. However, for EL-CIL they
are very distant and clearly separate, contrary to
the embeddings found by L-CIL, which preserve
the relations between the sentences. Thanks to that,
embeddings of the ambiguous behavior found by
L-CIL more closely resemble those of the behavior
which turns left at the ambiguous area (same as
the ambiguous behavior), which in turn invokes
similar actions. Note that CIL’s one-hot vectors are
unable to generalize since they belong to indepen-
dent dimensions of the latent space by definition.

6 Discussion and conclusion

This work presented an algorithm called Language-
Conditional Imitation Learning (L-CIL), which op-
timizes behavioral cloning loss paired with the
reconstruction loss for language input. Our ex-
periments revealed that L-CIL successfully imi-
tates multiple training behaviors while exhibiting
quality performance with the ambiguous one. The
analysis we performed elucidated that L-CIL suc-
ceeds in this generalization due to its architectural
setup. The auxiliary loss enables it to capture the
proper similarity between input sentences and in
consequence produce conditioning vectors similar
to those successfully used during training. Further
studies should measure the real extent to which L-
CIL generalizes by modifying the CA experiment
so that it became insurmountable to BC. Our cur-
rent insights are nevertheless promising for Human-
Computer Interaction or robotics research at large.
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