
Interactive Learning from Activity Description

Khanh Nguyen 1 Dipendra Misra 2 Robert Schapire 2 Miro Dudı́k 2 Patrick Shafto 3

Abstract

We present a novel interactive learning protocol
that enables training request-fulfilling agents by
verbally describing their activities. Our protocol
gives rise to a new family of interactive learn-
ing algorithms that offer complementary advan-
tages against traditional algorithms like imitation
learning (IL) and reinforcement learning (RL).
We develop an algorithm that practically imple-
ments this protocol and employ it to train agents in
two challenging request-fulfilling problems using
purely language-description feedback. Empirical
results demonstrate the strengths of our algorithm:
compared to RL baselines, it is more sample-
efficient; compared to IL baselines, it achieves
competitive success rates while not requiring feed-
back providers to have agent-specific expertise.
We also provide theoretical guarantees of the al-
gorithm under certain assumptions on the teacher
and the environment.

1. Introduction
The goal of a request-fulfilling agent is to map a given lan-
guage request in a situated environment to an execution that
accomplishes the intent of the request (Winograd, 1972;
Chen & Mooney, 2011; Tellex et al., 2012; Artzi et al.,
2013; Misra et al., 2017; Anderson et al., 2018; Chen et al.,
2019; Nguyen et al., 2019; Nguyen & Daumé III, 2019;
Gaddy & Klein, 2019). Developing request-fulfilling agents
is an important step towards creating autonomous assistants
that communicate with humans naturally. Request-fulfilling
agents have been typically trained using non-verbal inter-
active learning protocols such as imitation learning (IL)
which assumes labeled executions as feedback (Mei et al.,
2016; Anderson et al., 2018), or reinforcement learning
(RL) which uses scalar rewards as feedback (Chaplot et al.,
2018; Hermann et al., 2017). We introduce a new interac-

1Department of Computer Science, University of Maryland,
Maryland, USA 2Microsoft Research, New York, USA 3Rutgers
University, New Jersey, USA. Correspondence to: Khanh Nguyen
<kxnguyen@umd.edu>.

Preprint. Copyright 2021 by the author(s).

“Walk through the
hallway and turn right.
Walk past the dining table
and stop in the doorway.”

“Enter the house and go
left. Walk down the hall,
and take a right at the end
of the hallway. Stop outside
of the bathroom door.”

“Walk through the living
room and turn left. Walk
towards the pool table
and stop in the doorway.”

Figure 1. A real example of training an agent to fulfill a navigation
request in 3D environments (Anderson et al., 2018) using ADEL,
our implementation of the ILIAD protocol. The agent receives a
request “Enter the house...” which implies the path. Initially,
it does not understand language and thus wanders far from the
goal. Its execution (the path) is described as “Walk through
the living room...”. To ground the description language, the agent
learns to generate the path conditioned on the description. After
a number of interactions, its execution () is closer to the optimal
path. As this process iterates, the agent gradually improves its
understanding of the description language and thus also executes
requests more precisely.

tive learning protocol for training these agents called ILIAD:
Interactive Learning from Activity Description, where feed-
back is limited to language descriptions of executions.

Figure 1 illustrates an example of training an agent to fulfill
a navigation request using the ILIAD protocol. Learning
proceeds in episodes of interaction between a learning agent
and a teacher. In each episode, the agent is presented with
a language request and takes a sequence of actions in the
environment to execute the request. The agent is assumed to
have no prior language understanding capability, and there-
fore, cannot fulfill the request in the beginning. The teacher
enables language understanding by providing the agent with
a language description of the agent’s execution. We assume
that the descriptions are specified in the same language that
is used to specify the requests. Hence, by grounding the
descriptions to the corresponding executions, the agent can
acquire knowledge about the description language and thus
can also improve its request-fulfilling capability. Crucially,

Interactive Learning from Activity Description

Table 1. Trade-offs between the learning effort of the agent and the
teacher in learning protocols. Each protocol employs a different
medium for the teacher to convey feedback. If a medium is not nat-
ural to the teacher (e.g. IL-style demonstration), it must learn to en-
code feedback intent using that medium (teacher communication-
learning effort). Similarly, if a medium is not natural to the agent
(e.g. human language), it needs to learn to interpret feedback
(agent communication-learning effort). The agent also learns tasks
from information decoded from feedback (agent task-learning
effort). The qualitative claims on the “agent learning effort” col-
umn summarize our empirical findings on the learning efficiency
(measured by sample complexity) of these protocols.

Learning effort

Feedback Teacher Agent
Protocol medium (communication learning) (comm. & task learning)

IL Demonstration Highest Lowest
RL Scalar reward None Highest
ILIAD Language description None Medium

the agent receives no other feedback such as ground-truth
demonstration (Mei et al., 2016), scalar reward (Hermann
et al., 2017), or constraint (Miryoosefi et al., 2019). At test
time, the teacher is not present and the agent must execute
requests autonomously.

The ILIAD protocol leaves two open problems for the agent:
(a) how to generate executions that elicit useful descrip-
tions from the teacher and (b) how to effectively learn the
description language. We develop an algorithm named
ADEL: Activity-Description Explorative Learner that of-
fers practical solutions to these problems. For (a), we devise
a semi-supervised sampling scheme that efficiently explores
the execution space. For (b), we employ behavior cloning
(Pomerleau, 1991) to ground descriptions to executions. We
theoretically prove convergence for a variant of ADEL in
the contextual bandit setting (Langford & Zhang, 2008b).

Our paper does not argue for the primacy of one learning
protocol over the others. In fact, an important point we raise
is that there are multiple, possibly competing metrics for
comparing learning protocols. We focus on the trade-off
between the learning effort of the agent and the teacher in
each protocol (Table 1). In all protocols, the agent and the
teacher establish a communication channel that allows the
teacher to encode feedback and send it to the agent, who
learns tasks based on information decoded from feedback.
At one extreme, IL places the burden of establishing the
communication channel entirely on the teacher. To provide
a demonstration, the teacher in IL must learn to control the
agent to accomplish tasks by specifying actions that lie in
the agent’s action space.1 To compensate for this effort,

1Third-person or observational IL (Stadie et al., 2017; Sun
et al., 2019) allows the teacher to demonstrate tasks with their ac-
tion space. However, this framework is non-interactive because the

the agent usually learns very efficiently with IL because it
does not have to learn to interpret feedback, and the feed-
back directly specifies desired behavior. At another extreme,
we have RL and ILIAD, where the teacher provides feed-
back via agent-agnostic media (reward and language, respec-
tively). RL eliminates the agent communication-learning
effort by hard-coding the semantics of scalar rewards into
the learning algorithm.2 But the trade-off of using such
limited feedback is that the effort required by the agent to
learn the task increases. State-of-the-art RL algorithms are
notorious for their high sample complexity, making them
expensive to use outside simulators (Hermann et al., 2017;
Chaplot et al., 2018; Chevalier-Boisvert et al., 2019). By em-
ploying a natural and highly expressive medium like natural
language, ILIAD offers a compromise between RL and IL:
it is more sample-efficient than RL while not requiring the
teacher to master the agent’s control interface. Overall, no
protocol is superior in all metrics and the choice of protocol
depends on users’ preferences.

We empirically evaluate ADEL against IL and RL base-
lines on two tasks: vision-language navigation (Anderson
et al., 2018), and word-modification via regular expressions
(Andreas et al., 2018). Our results show that ADEL signifi-
cantly outperforms RL baselines in terms of both learning
efficiency and effectiveness. On the other hand, ADEL’s
success rate is competitive with those of the IL baselines
on the navigation task and is lower by 4% on the word
modification task. It takes approximately 5-8 times more
training episodes than the IL baselines to reach comparable
success rates, which is quite respectable considering that
the algorithm has to search in an exponentially large space
for the ground-truth executions whereas the IL baselines are
given these executions. Therefore, ADEL can be a preferred
algorithm whenever annotating ground-truth executions is
not feasible or is substantially more expensive than describ-
ing executions. For example, in the word-modification task,
ADEL teaches the agent without requiring a teacher with
knowledge about regular expressions, who can be costly to
recruit in practice. We believe the capability of non-experts
to provide feedback will make ADEL and more generally
the ILIAD protocol a strong contender in many scenarios.

2. ILIAD: Interactive Learning from Activity
Descriptions

Environment. We borrow our terminology from the rein-
forcement learning (RL) literature (Sutton & Barto, 2018).
We consider an agent acting in an environment with state

agent imitates pre-collected demonstrations and does not interact
with a teacher. We consider interactive IL (Ross et al., 2011), which
is shown to be more effective than non-interactive counterparts.

2By design, RL algorithms understand that higher reward value
implies better performance.

Interactive Learning from Activity Description

Algorithm 1 ILIAD protocol. Details of line 4 and line 6 are left
to specific implementations.

1: Initialize agent policy πθ : S × D → ∆(A)
2: for n = 1, 2, · · · , N do
3: World samples q = (R, d?, s1) ∼ P?(·)
4: Agent generates execution ê given πθ , d?, and s1
5: Teacher generates description d̂ ∼ PT (· | ê)
6: Agent uses

(
d?, ê, d̂

)
to update πθ

return πθ

space S, action space A, and transition function T : S ×
A → ∆(S), where ∆(S) denotes the space of all probabil-
ity distributions over S . LetR = {R : S ×A → [0, 1]} be
a set of reward functions. A task in the environment is de-
fined by a fixed choice of reward functionR ∈ R. The agent
does not have access to a task’s reward function. Instead, the
task is specified to the agent via a language request d? ∈ D,
where D is the set of all nonempty strings generated from
a finite vocabulary. For example, in robot navigation, a re-
quest “go to the kitchen” specifies a task given by a reward
function that is maximized when the robot is in the kitchen.

Execution Episode. At the beginning of an episode, a
task q = (R, d?, s1) of reward function R, request d?, and
start state s1 is sampled from a task distribution P?(q). The
agent starts in s1 and is presented with d? but does not
observe R or any rewards generated by it. The agent main-
tains a request-conditioned policy πθ : S × D → ∆(A)
with parameters θ, which takes in a state s ∈ S and
a request d ∈ D, and outputs a probability distribution
over A. Using this policy, it can generate an execution
ê = (s1, â1, s2, · · · , sH , âH), where H is the task horizon
(the time limit), âi ∼ πθ (· | si, d?) and si+1 ∼ T (· | si, âi)
for every i. Throughout the paper, we will use the notation
e ∼ Pπ (· | s1, d) to denote sampling an execution e by fol-
lowing policy π given a start state s1 and a request d. The
objective of the agent is to find a policy π with maximum
value, where we define the policy value V (π) as:

V (π) = Eq∼P?(·),ê∼Pπ(·|s1,d?)

[
H∑
i=1

R (si, âi)

]
(1)

ILIAD protocol. Alg 1 describes the ILIAD protocol for
training a request-fulfilling agent. It consists of a series of
N training episodes, where each episode starts with sam-
pling a task q = (R, d?, s1) from P?. The agent starts in
s1, receives d?, and generates an execution ê (line 4). The
feedback mechanism in ILIAD is provided by a teacher
that can describe executions in language. The teacher is
modeled by a fixed distribution PT : (S × A)H → ∆(D),
where (S × A)H is the space over H-step executions. Af-
ter completing its execution ê, the agent sends it to the
teacher and receives a language description of ê, which is

a sample d̂ ∼ PT (· | ê) (line 5). Finally, the agent uses
the triplet

(
d?, ê, d̂

)
to update its policy for the next round

(line 6). Crucially, the agent never receives any other feed-
back, including rewards, demonstrations, constraints, or
direct knowledge of the latent reward function. Any algo-
rithm implementing ADEL protocol has to decide how to
generate executions (line 4) and how to update the agent pol-
icy (line 6). The protocol does not provide any constraints
for these decisions.

Consistency of the teacher. In order for the agent to learn
to execute requests by grounding the description language,
we must require that the description language is similar to
the request language. Formally, we define the ground-truth
joint distribution over tasks and executions as follows

P? (e,R, s1, d) = Pπ? (e | s1, d)P? (R, d, s1) (2)

where π? is the optimal policy that maximizes Eq 1. From
this joint distribution, we derive the ground-truth conditional
distribution over requests given execution P?(d | e). This
distribution specifies the probability that a request d can
serve as a valid description of an execution e.

We expect that if PT (d | e) is close to P?(d | e) then
learning to understand descriptions will help with request-
fulfilling. In that case, the agent can treat a description
of an execution as a request that is fulfilled by that exe-
cution. Therefore, the description-execution pairs

(
d̂, ê
)

can be used as supervised-learning examples for the request
fulfilling problem.

The learning process can also be sped up if the agent is able
to exploit the compositionality of language. For example, if
a request is “turn right, walk to the kitchen” and the agent’s
execution is described as “turn left, walk to bedroom”, the
agent may not have successfully fulfilled the task but it can
learn what “turn” and “walk to” mean through the descrip-
tion. Later, it may learn to recognize “kitchen” through a
description “go to the kitchen” and compose that knowledge
with its understanding of “walk to” to better execute “walk
to the kitchen”.

3. ADEL: Learning from Activity Describers
via Semi-Supervised Exploration

We frame the ILIAD problem as follows: given that we can
effectively draw samples from the marginal P?(s1, d) and
a consistent teacher PT (d | e), how do we learn a policy
πθ such that Pπθ (e | s1, d) is close to P?(e | s1, d)? Here,
P?(e | s1, d) = Pπ?(e | s1, d) is the ground-truth request-
fulfilling distribution obtained from the joint distribution

Interactive Learning from Activity Description

Algorithm 2 Simple algorithm for estimating P?(e | s1, d) with
access to the true marginal P?(e | s1) and teacher PT (d | e).

1: B = ∅
2: for i = 1, 2, · · · , N do
3: World samples task q = (R, d?, s1) ∼ P?(·)
4: Sample

(
ê, d̂
)

as follows: ê ∼ P?(· | s1), d̂ ∼ PT (· | ê)

5: B ← B ∪
{(
ê, d̂
)}

6: Train a policy πθ(a | s, d) via maximum log-likelihood:

maxθ
∑

(ê,d̂)∈B
∑

(s,as)∈ê log πθ
(
as | s, d̂

)
where as is the action taken by the agent in state s

7: return πθ

defined in Eq 2. We have

P?(e | s1, d) ∝ P?(e | s1)P?(d | e)
≈ P?(e | s1)PT (d | e) (3)

As seen from the equation, the only missing piece re-
quired for estimating P?(e | s1, d) is the (state-dependent)
marginal P?(e | s1). Alg 2 presents a simple method for
learning an agent policy if we have access to this marginal.
It is easy to show that the pairs

(
ê, d̂
)

in the algorithm are
approximately drawn from the joint distribution P?(e, d)
and thus can be directly used to estimate the conditional
P?(e | s1, d).

Unfortunately, P?(e | s1) is usually unknown in our setting.
We present our main algorithm ADEL (Alg 3) which simul-
taneously estimates P?(e | s1) and P?(e | s1, d) through
interactions with the teacher. In this algorithm, we assume
access to an approximate marginal Pπω (e | s1) defined by
an explorative policy πω (a | s). This policy can be learned
from a dataset of unlabeled executions or be defined as a
program that synthesizes executions. In many applications,
reasonable unlabeled executions can be cheaply constructed
using knowledge about the structure of the execution. For
example, in robot navigation, valid executions are collision-
free and non-looping; in semantic parsing, predicted parses
should follow the syntax of the semantic language.

After constructing the approximate marginal Pπω (e | s1),
we could substitute it for the true marginal in Alg 2. How-
ever, using a fixed approximation of the marginal may lead
to sample inefficiency when there is a mismatch between the
approximate marginal and the true marginal. For example,
in the robot navigation example, if most human requests
specify the kitchen as the destination, the agent should focus
on generating executions that end in the kitchen to obtain
descriptions that are similar to those requests. If instead, a
uniform approximate marginal is used to generate execu-
tions, the agent obtains a lot of irrelevant descriptions.

ADEL minimizes potential marginal mismatch by iteratively
using the estimate of the marginal P?(e | s1) to improve

Algorithm 3 ADEL: our implementation of the ILIAD protocol.

1: Input: teacher model PT (d | e), approximate marginal
Pπω (e | s1), mixing rate λ ∈ [0, 1], annealing rate β ∈ (0, 1)

2: Initialize πθ : S × D → ∆(A) and B = ∅
3: for n = 1, 2, · · · , N do
4: World samples task q = (R, d?, s1) ∼ P?(·)
5: Agent generates ê ∼ P̃(· | s1, d?) (see Eq 4)
6: Teacher generates description d̂ ∼ PT (· | ê)
7: B ← B ∪

(
ê, d̂
)

8: Update agent policy:

θ ← max
θ′

∑
(ê,d̂)∈B

∑
(s,as)∈ê

log πθ′(as | s, d̂)

where as is the action taken by the agent in state s
9: Anneal mixing rate: λ← λ · β

return πθ

the estimate of the conditional P?(e | s1, d) and vice versa.
Initially, we set Pπω (e | s1) as the marginal over executions.
In each episode, we mix this distribution with Pπθ (e | s1, d),
the current estimate of the conditional, to obtain an im-
proved estimate of the marginal (line 5). Formally, given
a start state s1 and a request d?, we sample an execution ê
from the following distribution:

P̃(· | s1, d
?) , λPπω (· | s1) + (1− λ)Pπθ (· | s1, d

?) (4)

where λ ∈ [0, 1] is a mixing rate that is annealed to zero
over the course of training. Each component of the mixture
in Eq 4 is essential in different learning stages. Mixing with
Pπω accelerates convergence at the early stage of learning.
Later, when πθ improves, Pπθ skews P̃ towards executions
whose descriptions are closer to the human requests, closing
the gap with P?(e | s1). In line 6-8, similar to Alg 2, we
leverage the (improved) marginal estimate and the teacher
to draw samples

(
ê, d̂
)

and use them to re-estimate Pπθ .

Theoretical Analysis. We analyze an epoch-based vari-
ant of ADEL and show that under certain assumptions, it
converges to a near-optimal policy. In this variant, we run
the algorithm in epochs, where the agent policy is only up-
dated at the end of an epoch. In each epoch, we collect a
fresh batch of examples

{(
ê, d̂
)}

as in ADEL (line 4-7),
and use them to perform a batch update (line 8). We provide
a sketch of our theoretical results here and defer the full
details to Appendix A.

We consider the case of H = 1 where an execution
e = (s1, a) consists of the start state s1 and a single action a
taken by the agent. This setting while restricted captures the
non-trivial class of contextual bandit problems (Langford
& Zhang, 2008b). Sequential decision-making problems
where the agent makes decisions solely based on the start
state can be reduced to this setting by treating a sequence of

Interactive Learning from Activity Description

decisions as a single action (Kreutzer et al., 2017; Nguyen
et al., 2017a). We focus on the convergence of the iterations
of epochs, and assume that the maximum likelihood estima-
tion problem in each epoch can be solved optimally. We also
ablate the teacher learning difficulty by assuming access to
a fully consistent teacher, i.e., PT (d | e) = P?(d | e).

We make two crucial assumptions. Firstly, we make a
standard realizability assumption to ensure that our pol-
icy class is expressive enough to accommodate the optimal
solution of the maximum likelihood estimation. Secondly,
we assume that for every start state s1, the teacher matrix
P?(d | es1) over descriptions and executions es1 starting
with s1, has a non-zero minimum singular value σmin(s1).
Intuitively, this assumption implies that descriptions are
rich enough to help in deciphering actions. Under these
assumptions, we prove the following result:

Theorem 1 (Main Result). Let Pn(e | s1) be the marginal
distribution in the nth iteration. Then for any t ∈ N and
any start state s1 we have:

‖P?(e | s1)− 1

t

t∑
n=1

Pn(e | s1)‖2 ≤
1

σmin(s1)

√
2 ln |A|

t
.

Theorem 1 shows that running average of the marginal dis-
tribution converges to the true marginal distribution. As
argued before, access to the true marginal can be easily used
to learn a near-optimal policy. For brevity, we defer proof
and other details to Appendix A. Our results show that
under certain conditions, we can expect convergence to the
optimal policy. We leave the question of sample complexity
and addressing more general settings for future work.

4. Related Work
Frameworks for learning from language-based communica-
tion have been previously proposed. Common approaches
include: reducing the learning problem to reinforcement
learning (Goldwasser & Roth, 2014; MacGlashan et al.,
2015; Ling & Fidler, 2017; Goyal et al., 2019; Fu et al.,
2019; Sumers et al., 2020), grounding language to demon-
stration (Chen & Mooney, 2011; Misra et al., 2014; Bisk
et al., 2016; Liu et al., 2016; Wang et al., 2016; Li et al.,
2017; 2020a;b), or devising EM-based algorithms to parse
language into logical forms (Matuszek et al., 2012; Lab-
utov et al., 2018). The first approach may discard useful
learning signals from language feedback and inherits the
limitations of RL algorithms. The second requires extra
effort from the teacher to provide demonstrations. The third
approach has to bootstrap the language parser with labeled
executions. ADEL enables learning from a specific type of
language feedback (language description) without reducing
it to reward, requiring demonstrations, or assuming access to
labeled executions. Recently, several papers have proposed

using language description feedback for speeding up rein-
forcement learning (Jiang et al., 2019) or aiding exploration
of new skills (Colas et al., 2020). We provide a detailed
comparison with these papers in Appendix B.

Another related line of research is work on the rational
speech act (RSA) model (Grice, 1975; Golland et al., 2010;
Monroe & Potts, 2015; Goodman & Frank, 2016; Andreas
& Klein, 2016; Fried et al., 2018), which is also concerned
about transferring information via language. However, it is
important to point out that RSA is a mental reasoning model
whereas ILIAD is an interactive protocol. In RSA, a speaker
(or a listener) constructs a pragmatic message-encoding (or
decoding) scheme by building an internal model of a listener
(or a speaker). Importantly, during that process, one agent
never interacts with the other. In contrast, the ILIAD agent
learns through interaction with a teacher. In addition, RSA
focuses on encoding (or decoding) a single message while
ILIAD defines a process consisting of multiple rounds of
message exchanging.

Finally, our work also fundamentally differs from work on
(RL-based) cooperative emergent language (Lazaridou et al.,
2017; Havrylov & Titov, 2017; Das et al., 2017; Evtimova
et al., 2018; Kottur et al., 2017) in that we assume the teacher
speaks a fixed, well-formed language, whereas in that work
the teacher begins with no language capability and evolves
a language over the course of learning.

5. Experimental Setup
In this section, we present a general method for simulat-
ing an execution-describing teacher using a pre-collected
dataset (§5.1). Then we describe setups of the two problems
we conduct experiments on: vision-language navigation
(§5.2) and word modification (§5.3). Detail about the model
architecture, training hyperparameters, and how the teacher
is simulated in each problem is in the Appendix.

5.1. Simulating Teachers

ILIAD assumes access to a teacher PT (d | e) that can reli-
ably describe agent executions. For our experimental pur-
poses, employing human teachers is expensive and irrepro-
ducible, thus we simulate them using pre-collected datasets.
We assume availability of a dataset Bsim = {(Dn, en)}Ni=1,

where Dn =
{
d

(j)
n

}M
j=1

contains M human-generated re-

quests that are fulfilled by execution en. The agent does not
have direct access to this dataset; it only observes the data
points in the dataset by communicating with the simulated
teacher following the ILIAD protocol.

Each ILIAD episode requires providing a request d? at the
beginning and a description d̂ of an agent execution ê. The
request d? is chosen by first uniformly randomly selecting

Interactive Learning from Activity Description

an example (Dn, en) from Bsim, and then uniformly sam-
pling a request d? from Dn. The description d̂ is generated
as follows. We first use all the pairs

(
d

(j)
n , en

)
in Bsim to

train an RNN-based conditional language model P̃T (d | e)
via standard maximum log-likelihood. We can then gen-
erate a description of an execution by greedily decoding3

this model conditioned on the execution. However, given
limited training data, this model may not generate suffi-
ciently high-quality descriptions. Hence, we also make use
of the human-generated requests to provide higher-quality
descriptions. Let perf (ê, en)4 be a metric that evaluates
an agent execution ê against a ground-truth en (higher is
better). If perf (ê, en) is less than a pre-defined threshold
τ , we generate a description by greedily decoding the model
P̃T (· | ê); otherwise, we uniformly sample a request from
Dn and return it as the description. Implementation details
of perf can be found in Appendix.

Improved Descriptions with Pragmatic Inference. In the
case when perf (ê, en) < τ , instead of greedily generating
descriptions, we apply approximate pragmatic inference
(Andreas & Klein, 2016; Fried et al., 2018) to improve the
quality of descriptions. Intuitively, this approach emulates
the teacher’s ability to mentally simulate task execution
before uttering descriptions. Assume that the teacher also
implements its own execution policy, denoted by πT , and
has access to a simulator of the environment. A pragmatic
execution-describing teacher is defined as Pprag

T (d | e) ∝
PπT (e | d). In words, this means that the more likely a
request d invokes the teacher to generate an execution e, the
more likely that the teacher describes e as d.

In practice, however, constructing the pragmatic teacher as
above is often intractable. We follow Andreas et al. (2018),
using a proposal distribution to generate a set of candidate
descriptions, and then use PπT (e | d) to re-rank those candi-
dates. Concretely, for execution ê where perf (ê, en) < τ ,
we use the language model P̃T to generate a set of candi-

date descriptions Dcand =
{
d̂greedy

}
∪
{
d̂

(k)
sample

}K
k=1

. This

set consists of the greedily decoded description d̂greedy =

greedy
(
P̃T (· | ê)

)
and K sample descriptions d̂(k)

sample ∼

P̃T (· | ê). We use the pairs
(
en, d

(j)
n

)
of Bsim to train

the teacher execution policy πT (a | s, d) using supervised
learning. We select descriptions in Dcand from which πT
generates executions that incur high perf metrics:

Dprag =
{
d | d ∈ Dcand ∧ perf

(
ed, ê

)
≥ τ

}
(5)

3Greedily decoding an RNN-based model refers to stepwise
choosing the highest-probability class of the output softmax. In
this case, the classes are words in the description vocabulary.

4The choice of perf only matters for experimentation and is
not necessarily the same as the reward function R.

where ed ∼ PπT (· | s1, d), and s1 is the start state of ê. The
description is then chosen as follows:

d̂ ∼

{
unif (Dprag ∪ {∅}) if perf (ê, en) < τ,

unif (Dn) otherwise
(6)

where ∅ is the empty string.

5.2. Vision-Language Navigation (NAV)

Problem and Environment. An agent executes natural lan-
guage requests by navigating to locations in environments
that photo-realistically emulate residential buildings (Ander-
son et al., 2018). Navigation in an environment is framed as
traversing in a graph where each node represents a location
and each edge connects two nearby unobstructed locations.
A state s of an agent represents its location and the direction
it is facing. In the beginning, the agent starts in state s1

and receives a navigation request d?. At every time step,
the agent is not given the true state s but only receives an
observation o, which is a real-world RGB image capturing
the panoramic view at its current location.

Agent Policy. The agent maintains a policy πθ (a | o, d)
that takes in a current observation o and a request d, and
outputs an action a ∈ Vadj, where Vadj is set of locations
that are adjacent to the agent’s current location according to
the environment graph. A special <stop> action is taken
when the agent wants to terminate an episode or when it has
taken H actions. The agent successfully fulfills a request if
its final location is within three meters of the goal location.

Simulated Teacher. We simulate a teacher that does not
know how the agent operates and thus cannot provide
demonstrations. However, the teacher can verbally de-
scribe navigation executions. We follow §5.1, constructing
a teacher PT (d | e) that outputs language descriptions given
executions e = (o0, a1, · · · , oH).

5.3. Word Modification via Regular Expressions
(REGEX)

Problem. A human gives an agent an input word winp and
gives a natural language request d? that asks it to mod-
ify the characters of the word. The agent must follow
the request and output the modified word wout. For ex-
ample, given a word embolden and a request “replace all n
with c”, the correct output is emboldec. We train an agent
that solves this problem via a semantic parsing approach.
Given winp and d?, the agent generates a regular expression
â1:H = (â1, · · · , âH), which is a sequence of characters. It
then uses a regular expression compiler to apply the regular
expression on the input word to produce an output word
ŵout = compile

(
winp, â1:H

)
. Detail about the regular

expression syntax is available in the Appendix.

Agent Policy and Environment. The agent maintains a

Interactive Learning from Activity Description

policy πθ (a | s, d) that takes in a state s and a request d,
and outputs distribution over characters a ∈ Vregex, where
Vregex is the regular expression (character) vocabulary. A
special <stop> action is taken when the agent wants to
stop and apply the predicted regular expression onto the
input word or when the length of the regular expression
exceeds H . We set the initial state s1 =

(
winp, ∅

)
, where ∅

is the empty string. A next state is determined as follows

st+1 =

{
(ŵout, â1:t) if ât = <stop>,(
winp, â1:t

)
otherwise

(7)

where ŵout = compile
(
winp, â1:t

)
. The agent success-

fully fulfills a request if the predicted output ŵout exactly
matches the ground-truth wout.

Simulated Teacher. We demonstrate that a teacher without
knowledge about regular expressions can teach the agent
via language descriptions to solve this problem. Concretely,
we model a teacher PT

(
d | {winp

j , ŵout
j }Kj=1

)
that looks at

K pairs of input and (predicted) output words and generates
a description d̂ that describes the transformation applied to
the input words. The teacher requires multiple word pairs
as input to reduce ambiguity. For example, embolden →
emboldec can be described as “replace all n with c” or “re-
place the last letter with c”. If the agent generates the output
word by a regular expression that corresponds to the first de-
scription, observing more word pairs generated by the same
regular expression (e.g. now→ cow) increases the chance
that the teacher outputs the first description. To generate
K word pairs, in addition to the given input winp, the agent
samples K − 1 more input words from the dictionary and
executes d? on all K words using its policy.

Importantly, we do not use any regular expression data in
constructing the simulated teacher. The simulation data
are tuples

(
Dn,

(
winp
n , wout

n

))
which are not annotated with

ground-truth regular expressions. The teacher policy πT is
trained on these tuples to directly generate an output word
instead of predicting a regular expression like the agent
policy πθ. Our setup illustrates a scenario where training
with ILIAD is more scalable than imitation learning, which
in this case requires experts that have knowledge about
regular expressions.

5.4. Baselines and Evaluation Metrics

We compare interactive learning settings that employ differ-
ent teaching media. Given an agent execution ê of a request
d?, we consider:

◦ Learning from activity description (ILIAD): the teacher
returns a language description d̂ of ê.

◦ Imitation learning (IL): the teacher demonstrates cor-
rect actions in the states that the agent visited, returning

ILIAD IL (DAgger) RL (binary) RL (continuous)

0.0

0.1

0.2

0.3

0 × 100 2 × 105 4 × 105 6 × 105 8 × 105

Training episodes

V
al

id
at

io
n

su
cc

es
s

ra
te

0.0

0.2

0.4

0.6

0.8

0 × 100 2 × 105 4 × 105 6 × 105 8 × 105

Training episodesC
um

ul
at

iv
e

tr
ai

ni
ng

 s
uc

ce
ss

 r
at

e

(a) NAV

0.00

0.25

0.50

0.75

1.00

0 × 100 2.5 × 105 5 × 105 7.5 × 105 1 × 106

Training episodes

V
al

id
at

io
n

su
cc

es
s

ra
te

0.00

0.25

0.50

0.75

0 × 100 2.5 × 105 5 × 105 7.5 × 105 1 × 106

Training episodes

C
um

ul
at

iv
e

tr
ai

ni
ng

 s
uc

ce
ss

 r
at

e

(b) REGEX

Figure 2. Success rate on validation set (average held-out return)
and cumulative training success rate (average training return) over
the course of training. For each algorithm, we report means and
standard deviations over five runs with different random seeds.

e? = (s1, a
?
1, · · · , a?H , sH), where si are the states in

ê and a?i is the optimal actions to take in those states.
◦ Reinforcement learning (RL): the teacher provides a

scalar reward that evaluates ê. We consider a special
case when rewards are provided only at the end of
an episode. Because such feedback is cheap to collect
(e.g., star ratings) (Nguyen et al., 2017b; Kreutzer et al.,
2018; 2020), this setting is suitable for real-world ap-
plications. We experiment with both binary reward that
indicates task success, and continuous reward that mea-
sures normalized distance to the goal (see Appendix).

We use ADEL in the ILIAD setting, DAgger (Ross et al.,
2011) in IL, and REINFORCE5 (Williams, 1992) in RL. We
report the success rates of these algorithms, which are the
fractions of examples on a held-data data split (validation
or test) on which the agent successfully fulfills its requests.

6. Results
We compare learning algorithms not only on success rate,
but also on the effort expended by the teacher. While task
success rate is straightforward to compute, teacher effort is
hard to quantify because it depends on many factors: the
type of knowledge required to teach, the cognitive and phys-
ical abilities of the teacher, etc. For example, in REGEX,
providing demonstration in forms of regular expressions
may be easy for a computer science student, but could be

5We use a moving-average baseline to reduce variance. We also
experimented with A2C (Mnih et al., 2016) but it was less stable
in this sparse-reward setting. We are not aware of any work that
successfully trains agents using RL without supervised-learning
bootstrapping in the two problems we experiment on.

Interactive Learning from Activity Description

Table 2. Main results. We report means and standard deviations of success rates (%) over five runs with different random seeds. RL-Binary
and RL-Cont refer to the RL settings with binary and continuous rewards, respectively. Sample complexity is the number of training
episodes (or number of teacher responses) required to reach a validation success rate of at least c.

Sample complexity ↓

Learning setting Algorithm Val success rate (%) ↑ Test success rate (%) ↑ # Demonstrations # Rewards # Descriptions

Vision-language navigation (c = 30.0%)
IL DAgger 35.6± 1.35 32.0± 1.63 45K± 26K - -

RL-Binary REINFORCE 22.4± 1.15 20.5± 0.58 - +∞ -
RL-Cont REINFORCE 11.1± 2.19 11.3± 1.25 - +∞ -

ILIAD ADEL 32.2± 0.97 31.9± 0.76 - - 406K± 31K

Word modification (c = 85.0%)
IL DAgger 92.5± 0.53 93.0± 0.37 118K± 16K - -

RL-Binary REINFORCE 0.0± 0.00 0.0± 0.00 - +∞ -
RL-Cont REINFORCE 0.0± 0.00 0.0± 0.00 - +∞ -

ILIAD ADEL 88.1± 1.60 89.0± 1.30 - - 573K± 116K

Table 3. Effects of mixing with the approximate marginal. Sample
complexity is measured with the same c values as in Table 2.

Training algorithm Success rate (val) Sample complexity

Vision-language navigation
ADEL (λ = 0.5) 32.0 384K
ADEL, only approximate marginal (λ = 1) 29.4 +∞
ADEL, no approximate marginal (λ = 0) 0.0 +∞

Word modification
ADEL (λ = 0.5) 88.0 608K
ADEL, only approximate marginal (λ = 1) 55.7 +∞
ADEL, no approximate marginal (λ = 0) 0.2 +∞

a challenge for someone who is unfamiliar with program-
ming. In NAV, controlling a robot may not be viable for
an individual with motor impairment, whereas generating
language descriptions may infeasible for someone with a
verbal-communication disorder. Because it is not possible
cover all teacher demographics, our goal is to quantita-
tively compare the learning algorithms on learning effec-
tiveness and efficiency, and qualitatively compare them on
teacher effort to encode feedback intent.6 Our overall find-
ings (Table 1) highlight the strengths and weaknesses of
each learning algorithm and can potentially aid practitioners
in selecting algorithms that best suit their applications.

Main results. Our main results are given in Table 2. Over-
all, results in both problems match our expectations. The
IL baseline achieves the highest success rates (on average,
35.6% on NAV and 92.5% on REGEX). This framework is
the most effective way to teach the agents because it directly
specifies the ground-truth actions while also teaching agents
to recover from mistakes. The RL baseline is unable to

6The teacher’s effort can be decomposed into (a) the effort to
derive feedback intent (i.e. what it wants to convey to the agent)
and (b) the effort to encode the intent (i.e. expressing it using the
communication medium chosen by the learning protocol).

reach competitive success rates; especially, in REGEX, the
RL agent cannot learn the syntax of the regular expressions
and completely fails at test time. ADEL’s success rates are
slightly lower than those of IL (3-4% lower than) but are
substantially higher than those of RL (+9.8% on NAV and
+88.1% on REGEX compared to the best RL results).

To measure learning efficiency, we report the number of
teacher responses required to reach a reasonable success
rate (30% for NAV and 85% for REGEX). We observe that
all algorithms require hundreds of thousands of responses
from the teacher to attain those success rates. The RL agents
cannot learn effectively even after collecting more than 1M
responses from the teachers. ADEL attains reasonable suc-
cess rates using 5-8 times more responses than IL. This
is a decent efficiency considering that ADEL needs to find
the ground-truth executions in exponentially large search
spaces, while IL directly communicates these executions to
the agent. As ADEL lacks access to ground-truth executions,
its average training returns are 2-4 times lower than those
of IL (Figure 2).

Ablation. We conduct experiments to study the effective-
ness of mixing with the approximate marginal in the ADEL
algorithm (Table 3). First of all, we observe that learning
cannot take off without the approximate marginal (λ = 0).
On the other hand, using only the approximate marginal
to generate executions degrades performance, in terms of
both success rate and sample efficiency. This effect is more
visible on REGEX where the success rate drops by 33%
(compared to a 3% drop in NAV), indicating that the gap
between the approximate marginal and the true marginal
is larger in REGEX than in NAV. This matches our expec-
tations because the space over valid executions in REGEX
(i.e., the set of valid regular expressions generated from our
template) has much more elements than the space over valid
executions in NAV (i.e., the set of shortest-paths of lengths
2-6 in 54 graphs).

Interactive Learning from Activity Description

7. Conclusion
The communication protocol of a learning framework places
natural boundaries on the learning efficiency of any algo-
rithm that instantiates the framework. In this work, we
illustrate the benefits of designing learning algorithms based
on a natural, descriptive communication medium like hu-
man language. Employing such expressive protocols leads
to ample room for improving learning algorithms. For fu-
ture work, we will exploit the systematicity of language and
the decomposability nature of tasks to reduce effort from
feedback providers in these algorithms.

References
Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W.

Flambe: Structural complexity and representation learn-
ing of low rank mdps. In Proceedings of Advances in
Neural Information Processing Systems, 2020.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M.,
Sünderhauf, N., Reid, I., Gould, S., and van den Hengel,
A. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

Andreas, J. and Klein, D. Reasoning about pragmatics with
neural listeners and speakers. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pp. 1173–1182, Austin, Texas, November
2016. Association for Computational Linguistics. doi: 10.
18653/v1/D16-1125. URL https://www.aclweb.
org/anthology/D16-1125.

Andreas, J., Klein, D., and Levine, S. Learning with la-
tent language. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 2166–2179, New Orleans,
Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1197. URL https:
//www.aclweb.org/anthology/N18-1197.

Artzi, Y., FitzGerald, N., and Zettlemoyer, L. Seman-
tic parsing with combinatory categorial grammars. In
Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (Tutorials), pp. 2,
Sofia, Bulgaria, August 2013. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/P13-5002.

Bisk, Y., Yuret, D., and Marcu, D. Natural language com-
munication with robots. In Proceedings of the 2016
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-

guage Technologies, pp. 751–761, San Diego, Cali-
fornia, June 2016. Association for Computational Lin-
guistics. doi: 10.18653/v1/N16-1089. URL https:
//www.aclweb.org/anthology/N16-1089.

Chaplot, D. S., Sathyendra, K. M., Pasumarthi, R. K., Ra-
jagopal, D., and Salakhutdinov, R. Gated-attention ar-
chitectures for task-oriented language grounding. In As-
sociation for the Advancement of Artificial Intelligence,
2018.

Chen, D. L. and Mooney, R. J. Learning to interpret natural
language navigation instructions from observations. In
Association for the Advancement of Artificial Intelligence,
2011.

Chen, H., Suhr, A., Misra, D., and Artzi, Y. Touchdown:
Natural language navigation and spatial reasoning in vi-
sual street environments. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2019.

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems,
L., Saharia, C., Nguyen, T. H., and Bengio, Y. Babyai:
A platform to study the sample efficiency of grounded
language learning. In Proceedings of the International
Conference on Learning Representations, 2019.

Colas, C., Karch, T., Lair, N., Dussoux, J.-M., Moulin-Frier,
C., Dominey, P. F., and Oudeyer, P.-Y. Language as a
cognitive tool to imagine goals in curiosity-driven explo-
ration. In Proceedings of Advances in Neural Information
Processing Systems, 2020.

Das, A., Kottur, S., Moura, J. M., Lee, S., and Batra, D.
Learning cooperative visual dialog agents with deep re-
inforcement learning. In International Conference on
Computer Vision, 2017.

Evtimova, K., Drozdov, A., Kiela, D., and Cho, K. Emergent
communication in a multi-modal, multi-step referential
game. In Proceedings of the International Conference on
Learning Representations, 2018.

Fried, D., Andreas, J., and Klein, D. Unified pragmatic
models for generating and following instructions. In
Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pp. 1951–1963, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1177. URL https://www.
aclweb.org/anthology/N18-1177.

Fu, J., Korattikara, A., Levine, S., and Guadarrama, S. From
language to goals: Inverse reinforcement learning for
vision-based instruction following. In Proceedings of the

https://www.aclweb.org/anthology/D16-1125
https://www.aclweb.org/anthology/D16-1125
https://www.aclweb.org/anthology/N18-1197
https://www.aclweb.org/anthology/N18-1197
https://www.aclweb.org/anthology/P13-5002
https://www.aclweb.org/anthology/P13-5002
https://www.aclweb.org/anthology/N16-1089
https://www.aclweb.org/anthology/N16-1089
https://www.aclweb.org/anthology/N18-1177
https://www.aclweb.org/anthology/N18-1177

Interactive Learning from Activity Description

International Conference on Learning Representations,
2019.

Gaddy, D. and Klein, D. Pre-learning environment repre-
sentations for data-efficient neural instruction following.
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 1946–1956,
Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1188. URL https:
//www.aclweb.org/anthology/P19-1188.

Goldwasser, D. and Roth, D. Learning from natural instruc-
tions. Machine learning, 94(2):205–232, 2014.

Golland, D., Liang, P., and Klein, D. A game-theoretic
approach to generating spatial descriptions. In Pro-
ceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pp. 410–419, Cam-
bridge, MA, October 2010. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/D10-1040.

Goodman, N. D. and Frank, M. C. Pragmatic language inter-
pretation as probabilistic inference. Trends in Cognitive
Sciences, 20(11):818–829, 2016.

Goyal, P., Niekum, S., and Mooney, R. J. Using natural
language for reward shaping in reinforcement learning. In
International Joint Conference on Artificial Intelligence,
2019.

Grice, H. P. Logic and conversation. In Speech acts, pp.
41–58. Brill, 1975.

Havrylov, S. and Titov, I. Emergence of language with multi-
agent games: Learning to communicate with sequences
of symbols. In Proceedings of Advances in Neural Infor-
mation Processing Systems, 2017.

Hermann, K. M., Hill, F., Green, S., Wang, F., Faulkner,
R., Soyer, H., Szepesvari, D., Czarnecki, W., Jaderberg,
M., Teplyashin, D., Wainwright, M., Apps, C., Hassabis,
D., and Blunsom, P. Grounded language learning in a
simulated 3D world. CoRR, abs/1706.06551, 2017.

Jiang, Y., Gu, S., Murphy, K., and Finn, C. Language as
an abstraction for hierarchical deep reinforcement learn-
ing. In Proceedings of Advances in Neural Information
Processing Systems, 2019.

Kottur, S., Moura, J., Lee, S., and Batra, D. Natural lan-
guage does not emerge ‘naturally’ in multi-agent dia-
log. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pp.
2962–2967, Copenhagen, Denmark, September 2017. As-
sociation for Computational Linguistics. doi: 10.18653/
v1/D17-1321. URL https://www.aclweb.org/
anthology/D17-1321.

Kreutzer, J., Sokolov, A., and Riezler, S. Bandit struc-
tured prediction for neural sequence-to-sequence learn-
ing. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1503–1513, Vancouver, Canada,
July 2017. Association for Computational Linguistics.
doi: 10.18653/v1/P17-1138. URL https://www.
aclweb.org/anthology/P17-1138.

Kreutzer, J., Uyheng, J., and Riezler, S. Reliability and
learnability of human bandit feedback for sequence-to-
sequence reinforcement learning. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp.
1777–1788, Melbourne, Australia, July 2018. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/P18-1165. URL https://www.aclweb.org/
anthology/P18-1165.

Kreutzer, J., Riezler, S., and Lawrence, C. Learning from hu-
man feedback: Challenges for real-world reinforcement
learning in nlp. In Proceedings of Advances in Neural
Information Processing Systems, 2020.

Labutov, I., Yang, B., and Mitchell, T. Learning to learn
semantic parsers from natural language supervision. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1676–1690,
Brussels, Belgium, October-November 2018. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/D18-1195. URL https://www.aclweb.org/
anthology/D18-1195.

Langford, J. and Zhang, T. The epoch-greedy algorithm for
multi-armed bandits with side information. In Advances
in neural information processing systems, pp. 817–824,
2008a.

Langford, J. and Zhang, T. The epoch-greedy algo-
rithm for multi-armed bandits with side information.
In Platt, J., Koller, D., Singer, Y., and Roweis, S.
(eds.), Advances in Neural Information Processing
Systems, volume 20, pp. 817–824. Curran Associates,
Inc., 2008b. URL https://proceedings.
neurips.cc/paper/2007/file/
4b04a686b0ad13dce35fa99fa4161c65-Paper.
pdf.

Lazaridou, A., Peysakhovich, A., and Baroni, M. Multi-
agent cooperation and the emergence of (natural) lan-
guage. In Proceedings of the International Conference
on Learning Representations, 2017.

Li, T. J.-J., Li, Y., Chen, F., and Myers, B. A. Programming
iot devices by demonstration using mobile apps. In Inter-
national Symposium on End User Development, pp. 3–17.
Springer, 2017.

https://www.aclweb.org/anthology/P19-1188
https://www.aclweb.org/anthology/P19-1188
https://www.aclweb.org/anthology/D10-1040
https://www.aclweb.org/anthology/D10-1040
https://www.aclweb.org/anthology/D17-1321
https://www.aclweb.org/anthology/D17-1321
https://www.aclweb.org/anthology/P17-1138
https://www.aclweb.org/anthology/P17-1138
https://www.aclweb.org/anthology/P18-1165
https://www.aclweb.org/anthology/P18-1165
https://www.aclweb.org/anthology/D18-1195
https://www.aclweb.org/anthology/D18-1195
https://proceedings.neurips.cc/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf

Interactive Learning from Activity Description

Li, T. J.-J., Chen, J., Mitchell, T. M., and Myers, B. A.
Towards effective human-ai collaboration in gui-based
interactive task learning agents. Workshop on Artificial In-
telligence for HCI: A Modern Approach (AI4HCI), 2020a.

Li, T. J.-J., Radensky, M., Jia, J., Singarajah, K., Mitchell,
T. M., and Myers, B. A. Interactive task and concept learn-
ing from natural language instructions and gui demonstra-
tions. In The AAAI-20 Workshop on Intelligent Process
Automation (IPA-20), 2020b.

Ling, H. and Fidler, S. Teaching machines to describe
images via natural language feedback. In Proceedings
of Advances in Neural Information Processing Systems,
2017.

Liu, C., Yang, S., Saba-Sadiya, S., Shukla, N., He, Y., Zhu,
S.-C., and Chai, J. Jointly learning grounded task struc-
tures from language instruction and visual demonstra-
tion. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, pp.
1482–1492, 2016.

MacGlashan, J., Babes-Vroman, M., desJardins, M.,
Littman, M. L., Muresan, S., Squire, S., Tellex, S., Aru-
mugam, D., and Yang, L. Grounding english commands
to reward functions. In Robotics: Science and Systems,
2015.

Magalhaes, G. I., Jain, V., Ku, A., Ie, E., and Baldridge, J.
General evaluation for instruction conditioned navigation
using dynamic time warping. In Proceedings of Advances
in Neural Information Processing Systems, 2019.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo, L., and
Fox, D. A joint model of language and perception for
grounded attribute learning. In Proceedings of the Inter-
national Conference of Machine Learning, 2012.

Mei, H., Bansal, M., and Walter, M. R. Listen, attend,
and walk: Neural mapping of navigational instructions to
action sequences. In Association for the Advancement of
Artificial Intelligence (AAAI), 2016.

Miryoosefi, S., Brantley, K., Daume III, H., Dudik, M.,
and Schapire, R. E. Reinforcement learning with
convex constraints. In Wallach, H., Larochelle, H.,
Beygelzimer, A., dAlché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, volume 32, pp. 14093–14102. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
873be0705c80679f2c71fbf4d872df59-Paper.
pdf.

Misra, D., Langford, J., and Artzi, Y. Mapping instructions
and visual observations to actions with reinforcement

learning. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2017.

Misra, D. K., Sung, J., Lee, K., and Saxena, A. Tell Me
Dave: Context-sensitive grounding of natural language to
mobile manipulation instructions. In Robotics: Science
and Systems (RSS), 2014.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
Proceedings of the International Conference of Machine
Learning, 2016.

Monroe, W. and Potts, C. Learning in the Rational Speech
Acts model. In Proceedings of 20th Amsterdam Collo-
quium, 2015.

Nguyen, K. and Daumé III, H. Help, anna! visual naviga-
tion with natural multimodal assistance via retrospective
curiosity-encouraging imitation learning. In Proceed-
ings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), November 2019. URL
https://arxiv.org/abs/1909.01871.

Nguyen, K., Daumé III, H., and Boyd-Graber, J. Rein-
forcement learning for bandit neural machine translation
with simulated human feedback. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 1464–1474, Copenhagen, Den-
mark, September 2017a. Association for Computational
Linguistics. doi: 10.18653/v1/D17-1153. URL https:
//www.aclweb.org/anthology/D17-1153.

Nguyen, K., Daumé III, H., and Boyd-Graber, J. Rein-
forcement learning for bandit neural machine translation
with simulated human feedback. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 1464–1474, Copenhagen, Den-
mark, September 2017b. Association for Computational
Linguistics. doi: 10.18653/v1/D17-1153. URL https:
//www.aclweb.org/anthology/D17-1153.

Nguyen, K., Dey, D., Brockett, C., and Dolan, B. Vision-
based navigation with language-based assistance via im-
itation learning with indirect intervention. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019. URL https://arxiv.org/
abs/1812.04155.

Pomerleau, D. A. Efficient training of artificial neural net-
works for autonomous navigation. Neural Computation,
3(1):88–97, 1991.

Ross, S., Gordon, G., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In Artificial Intelligence and Statistics
(AISTATS), 2011.

https://proceedings.neurips.cc/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/873be0705c80679f2c71fbf4d872df59-Paper.pdf
https://arxiv.org/abs/1909.01871
https://www.aclweb.org/anthology/D17-1153
https://www.aclweb.org/anthology/D17-1153
https://www.aclweb.org/anthology/D17-1153
https://www.aclweb.org/anthology/D17-1153
https://arxiv.org/abs/1812.04155
https://arxiv.org/abs/1812.04155

Interactive Learning from Activity Description

Stadie, B. C., Abbeel, P., and Sutskever, I. Third-person
imitation learning. In Proceedings of the International
Conference on Learning Representations, 2017.

Sumers, T. R., Ho, M. K., Hawkins, R. D., Narasimhan,
K., and Griffiths, T. L. Learning rewards from linguistic
feedback. 2020.

Sun, W., Vemula, A., Boots, B., and Bagnell, J. A. Provably
efficient imitation learning from observation alone. In
Proceedings of the International Conference of Machine
Learning, June 2019.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tellex, S., Thaker, P., Joseph, J., and Roy, N. Toward
learning perceptually grounded word meanings from un-
aligned parallel data. In Proceedings of the Second
Workshop on Semantic Interpretation in an Actionable
Context, pp. 7–14, Montréal, Canada, June 2012. As-
sociation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/W12-2802.

Wang, S. I., Liang, P., and Manning, C. D. Learning lan-
guage games through interaction. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp.
2368–2378, Berlin, Germany, August 2016. Associa-
tion for Computational Linguistics. doi: 10.18653/
v1/P16-1224. URL https://www.aclweb.org/
anthology/P16-1224.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8, 1992.

Winograd, T. Understanding natural language. Cognitive
Psychology, 3(1):1–191, 1972.

https://www.aclweb.org/anthology/W12-2802
https://www.aclweb.org/anthology/W12-2802
https://www.aclweb.org/anthology/P16-1224
https://www.aclweb.org/anthology/P16-1224

Interactive Learning from Activity Description

Notation Definition

∆(U) Space of all distributions over a set U
unf(U) Denotes the uniform distribution over a set U
‖.‖p p-norm

DKL(Q1(x | y) || Q2(x | y)) KL-divergence between two distributions Q1(· | y) and Q2(· | y) over a countable
set X . Formally, DKL(Q1(x | y) || Q2(x | y)) =

∑
x∈X Q1(x | y) ln Q1(x|y)

Q2(x|y) .

supp Q(x) Support of a distribution Q ∈ ∆(X). Formally, suppQ(x) = {x ∈ X | Q(x) > 0}.
N Set of natural numbers
S State space
s A single state in S
A Finite action space
a a single action in A
D Set of all possible descriptions and requests
d A single description or request

T : S ×A → ∆(S) Transition function with T (s′ | s, a) denoting the probability of transitioning to
state s′ given state s and action a.

R Family of reward functions
R : S ×A → [0, 1] Reward function with R(s, a) denoting the reward for taking action a in state s

H Horizon of the problem denoting the number of actions in a single episode.
e An execution e = (s1, a1, s2, · · · , sH , aH) describing states and actions in an episode.

q = (R, d, s1) A single task comprising of reward function R, request d and start state s1

P?(q) Task distribution defined by the world
P?(e,R, s, d) Joint distribution over executions and task (see Equation 2).
PT (d | e) Teacher model denoting distribution over descriptions d for a given execution e.

Θ Set of all parameters of agent’s policy.
θ Parameters of agent’s policy. Belongs to the set Θ.

πθ(a | s, d) Agent’s policy denoting the probability of action a given state s, description d,
and parameters θ.

Table 4. List of common notations and their definitions.

Appendix: Interactive Learning from Activity Description
The appendix is organized as follows:

◦ Theoretical guarantees for ADEL are stated and proved in Appendix A;
◦ Detailed comparison with related works that use language feedback (Appendix B);
◦ Settings of the two problems we conduct experiments on (Appendix C);
◦ A practical implementation of the ADEL algorithm that we use for experimentation (Appendix D);
◦ Training details including model architecture and hyperparameters (Appendix E);
◦ Qualitative examples (Appendix F).

We provide a list of notations in Table 4 on page 13.

A. Theoretical Analysis of ADEL

In this section, we provide a theoretical justification for an epoch-version of ADEL for the case of H = 1. We prove
consistency results showing ADEL learns a near-optimal policy, and we also derive the convergence rate under the assumption

Interactive Learning from Activity Description

that we perform maximum likelihood estimation optimally and the teacher is consistent. We call a teacher model PT (d | e)
to be consistent if for every execution e and description d we have PT (d | e) = P?(d | e). Recall that the conditional
distribution P?(d | e) is derived from the joint distribution defined in Equation 2. We will use superscript ? to denote all
probability distributions that are derived from this joint distribution.

We start by writing the epoch-version of ADEL in Algorithm 4 for an arbitrary value of H . The epoch version of ADEL runs
an outer loop of epochs (line 3-10). The agent model is updated only at the end of an epoch. In the inner loop (line 5-9), the
agent samples a batch using the teacher model and the agent model. This is used to update the model at the end of the epoch.

At the start of the nth epoch, our sampling scheme in line 6-9 defines a procedure to sample (ê, d̂) from a distribution Dn

that remains fixed over this whole epoch. To define Dn, we first define Pn(e) = E(R,d,s1)∼P?(q) [Pn(e | s1, d)] where we
use the shorthand Pn(e | s1, d) to refer to Pπθn (e | s1, d). Note that ê ∼ Pn(e) in line 7. As d̂ ∼ P?(d | ê), therefore, we
arrive at the following form of Dn:

Dn(ê, d̂) = P?(d̂ | ê)Pn(ê). (8)

We will derive our theoretical guarantees for H = 1. This setting is known as the contextual bandit setting (Langford
& Zhang, 2008a), and while simpler than general reinforcement learning setting, it captures a large non-trivial class of
problems. In this case, an execution e = [s1, a1] can be described by the start state s1 and a single action a1 ∈ A taken by
the agent. Since there is a single state and action in any execution, therefore, for cleaner notations we will drop the subscript
and simply write s, a instead of s1, a1. For convenience, we also define a few extra notations. Firstly, we define the marginal
distribution Dn(s, d̂) =

∑
a′∈ADn([s, a′], d). Secondly, let P?(s) be the marginal distribution over start state s given by

E(R,d,s1)∼P?(q)[1{s1 = s}]. We state some useful relations between these probability distributions in the next lemma.

Algorithm 4 EPOCHADEL: Epoch Version of ADEL. We assume the teacher is consistent, i.e., PT (d | e) = P?(d | e) for every (d, e).

1: Input: teacher model P?(d | e) and task distribution model P?(q).
2: Initialize agent policy πθ1 : S × D → unf(A)
3: for n = 1, 2, · · · , N do
4: B = ∅
5: for m = 1, 2, · · · ,M do
6: World samples q = (R, d?, s1) ∼ P?(·)
7: Agent generates ê ∼ Pπθn (· | s1, d

?)

8: Teacher generates description d̂ ∼ P?(· | ê)
9: B ← B ∪

{(
ê, d̂
)}

10: Update agent policy using batch updates:

θn+1 ← arg max
θ′∈Θ

∑
(ê,d̂)∈B

∑
(s,as)∈ê

log πθ′(as | s, d̂)

where as is the action taken by the agent in state s in execution ê.
return πθ

Lemma 2. For any n ∈ N, we have:

Pn(e := [s, a]) = P?(s)Pn(a | s), where Pn(a | s) :=
∑
d

P?(d | s)Pn(a | s, d). (9)

Proof. We first compute the marginal distribution
∑
a′∈A Pn(e′ := [s, a′]) over s:∑

a′∈A
Pn(e′ := [s, a′]) =

∑
a′∈A

∑
R,d

P?(R, d, s)Pn(a′ | s, d) =
∑
R,d

P?(R, d, s) = P?(s).

Next we compute the conditional distribution Pn(a | s) as shown:

Pn(a | s) =
Pn([s, a])∑

a′∈A Pn([s, a′])
=
∑
R,d

P?(R, d, s)Pn(a | s, d)

P?(s)
=
∑
d

P?(s, d)Pn(a | s, d)

P?(s)
=
∑
d

P?(d | s)Pn(a | s, d).

Interactive Learning from Activity Description

This also proves Pn([s, a]) = P?(s)Pn(a | s).

For H = 1, the update equation in line 10 solves the following optimization equation:

max
θ′∈Θ

Jn(θ) where Jn(θ) :=
∑

(ê:=[s,a],d̂)∈B

lnπθ′(a | s, d̂). (10)

Here Jn(θ) is the empirical objective whose expectation over draws of batches is given by:

E[Jn(θ)] = E(ê=[s,a],d)∼Dn [lnπθ(a | s, d)] .

As this is negative of the cross entropy loss, the Bayes optimal value would be achieved for πθ(a | s, d) = Dn(a | s, d)
for all a ∈ A and every (s, d) ∈ suppDn(s, d). We next state the form of this Bayes optimal model and then state our key
realizability assumption.

Lemma 3. Fix n ∈ N. For every (s, d) ∈ suppDn(s, d) the value of the Bayes optimal model Dn(a | s, d) at the end of
the nth epoch is given by:

Dn(a | s, d) =
P?(d | [s, a])Pn(a | s)∑

a′∈A P?(d | [s, a′])Pn(a′ | s)
.

Proof. The Bayes optimal model is given by Dn(a | s, d) for every (s, d) ∈ suppDn(s, d). We compute this using Bayes’
theorem.

Dn(a | s, d) =
Dn([s, a], d)∑

a′∈ADn([s, a′], d)
=

P?(d | [s, a])Pn([s, a])∑
a′∈A P?(d | [s, a′])Pn([s, a′])

=
P?(d | [s, a])Pn(a | s)∑

a′∈A P?(d | [s, a′])Pn(a′ | s)
.

The last equality above uses Lemma 2.

In order to learn the Bayes optimal model, we need our policy class to be expressive enough to contain this model. We
formally state this realizability assumption below.

Assumption 1 (Realizability). For every θ ∈ Θ, there exists θ′ ∈ Θ such that for every start state s, description d we have:

∀a ∈ A, πθ′(a | s, d) =
P?(d | [s, a])Qθ(a | s)∑

a′∈A P?(d | [s, a′])Qθ(a′ | s)
, where Qθ(a | s) =

∑
d′

P?(d′ | s)πθ(a | s, d′).

We can use the realizability assumption along with convergence guarantees for log-loss to state the following result:

Theorem 4 (Theorem 21 of (Agarwal et al., 2020)). Fix m ∈ N and δ ∈ (0, 1). Let {(d(i), e(i) = [s(i), a(i)]}mi=1 be i.i.d
draws from Dn(e, d) and let θn+1 be the solution to the optimization problem in line 10 of the nth epoch of EPOCHADEL.
Then with probability at least 1− δ we have:

Es,d∼Dn
[
‖Dn(a | s, d)− Pπθn+1

(a | s, d)‖1
]
≤ C

√
1

m
ln |Θ|/δ, (11)

where C > 0 is a universal constant.

Please see Agarwal et al. (2020) for a proof. Lemma 4 implies that assuming realizability, as M → ∞, our learned
solution converges to the Bayes optimal model pointwise on the support over Dn(s, d). Since we are only interested in
consistency, we will assume M →∞ and assume Pn+1(a | s, d) = Dn(a | s, d) for every (s, d) ∈ suppDn(s, d). We will
refer to this as optimally performing the maximum likelihood estimation at nth epoch. If the learned policy is given by
Pn+1(a | s, d) = Dn(a | s, d), then the next Lemma states the relationship between the marginal distribution Pn+1(a | s)
for the next time epoch and marginal Pn(a | s) for this epoch.

Lemma 5 (Inductive Relation Between Marginals). For any n ∈ N, if we optimally perform the maximum likelihood
estimation at the nth epoch of EPOCHADEL, then for all start states s, the marginal distribution Pn+1(a | s) for the
(n+ 1)th epoch is given by:

Pn+1(a | s) =
∑
d

P?(d | [s, a])Pn(a | s)P?(d | s)∑
a′∈A P?(d | [s, a′])Pn(a′ | s)

.

Interactive Learning from Activity Description

Proof. The proof is completed as follows:

Pn+1(a | s) =
∑
d

P?(d | s)Pn+1(a | s, d) =
∑
d

P?(d | [s, a])Pn(a | s)P?(d | s)∑
a′∈A P?(d | [s, a′])Pn(a′ | s)

,

where the first step uses Lemma 2 and the second step uses Pn+1(a | s, d) = Dn(a | s, d) (optimally solving maximum
likelihood) and the form of Dn from Lemma 3.

A.1. Proof of Convergence for Marginal Distribution

Our previous analysis associates a probability distribution Pn(a | s, d) and Pn(a | s) with the nth epoch of EPOCHADEL.
For any n ∈ N, the nth epoch of EPOCHADEL can be viewed as a transformation of Pn(a | s, d) 7→ Pn+1(a | s, d) and
Pn(a | s) 7→ Pn+1(a | s). In this section, we show that under certain conditions, the running average of the marginal
distributions Pn(a | d) converges to the optimal marginal distribution P?(a | d). We then discuss how this can be used to
learn the optimal policy P?(a | s, d).

We use a potential function approach to measure the progress of each epoch. Specifically, we will use KL-divergence as our
choice of potential function. The next lemma bounds the change in potential after a single iteration.

Lemma 6. [Potential Difference Lemma] For any n ∈ N and start state s, we define the following distribution over
descriptions Pn(d | s) :=

∑
a′∈A P?(d | [s, a])Pn(a | s). Then for every start state s we have:

DKL(P?(a | s) || Pn+1(a | s))−DKL(P?(a | s) || Pn(a | s)) ≤ −DKL(P?(d | s) || Pn(d | s)).

Proof. The change in potential from the start of nth epoch to its end is given by:

DKL(P?(a | s) || Pn+1(a | s))−DKL(P?(a | s) || Pn(a | s)) = −
∑
a∈A

P?(a | s) ln

(
Pn+1(a | s)
Pn(a | s)

)
(12)

Using Lemma 5 and the definition of Pn(d | s) we get:

Pn+1(a | s)
Pn(a | s)

=
∑
d

P?(d | [s, a])P?(d | s)∑
a′∈A P?(d | [s, a′])Pn(a′ | s)

=
∑
d

P?(d | [s, a])
P?(d | s)
Pn(d | s)

.

Taking logarithms and applying Jensen’s inequality gives:

ln

(
Pn+1(a | s)
Pn(a | s)

)
= ln

(∑
d

P?(d | [s, a])
P?(d | s)
Pn(d | s)

)
≥
∑
d

P?(d | [s, a]) ln

(
P?(d | s)
Pn(d | s)

)
. (13)

Taking expectations of both sides with respect to P?(a | s) gives us:∑
a

P?(a | s) ln

(
Pn+1(a | s)
Pn(a | s)

)
≥
∑
a

∑
d

P?(a | s)P?(d | [s, a]) ln

(
P?(d | s)
Pn(d | s)

)
=
∑
d

P?(d | s) ln

(
P?(d | s)
Pn(d | s)

)
= DKL(P?(d | s) || Pn(d | s))

where the last step uses the definition of Pn(d | s). The proof is completed by combining the above result with Equation 12.

The Ps matrix. For a fixed start state s, we define Ps as the matrix whose entries are P?(d | [s, a]). The columns of this
matrix range over actions, and the rows range over descriptions. We denote the minimum singular value of the description
matrix Ps by σmin(s).

We state our next assumption that the minimum singular value of Ps matrix is non-zero.

Interactive Learning from Activity Description

Assumption 2 (Minimum Singular Value is Non-Zero). For every start state s, we assume σmin(s) > 0.

Intuitively, this assumption states that there is enough information in the descriptions for the agent to decipher probabilities
over actions from learning probabilities over descriptions. More formally, we are trying to decipher P?(a | s) using access
to two distributions: P?(d | s) which generates the initial requests, and the teacher model P?(d | [s, a]) which is used to
describe an execution e = [s, a]. This can result in an underspecified problem. The only constraints these two distributions
place on P?(a | s) is that

∑
a∈A P?(d | [s, a])P?(a | s) = P?(d | s). This means all we know is that P?(a | s) belongs to

the following set of solutions of the previous linear systems of equation:{
Q(a | s) |

∑
a∈A

P?(d | [s, a])Q(a | s) = P?(d | s) ∀d, Q(a | s) is a distribution

}
.

As P?(a | s) belongs to this set hence this set is nonempty. However, if we also assume that σmin(s) > 0 then the above set
has a unique solution. Recall that singular values are square root of eigenvalues of P>s Ps, and so σmin(s) > 0 implies that
the matrix P>s Ps is invertible. 7 This means, we can find the unique solution of the linear systems of equation by multiplying
both sides by (P>s Ps)−1P>s . Hence, Assumption 2 makes it possible for us to find P?(a | s) using just the information we
have. Note that we cannot solve the linear system of equations directly since the description space and action space can be
extremely large. Hence, we use an oracle based solution via reduction to supervised learning.

The next theorem shows that the running average of learned probabilities Pn(a | s) converges to the optimal marginal
distribution P?(a | s) at a rate determined by the inverse square root of the number of epochs of ADEL, the minimum
singular value of the matrix Ps, and the KL-divergence between optimal marginal and initial value.

Theorem 7. [Rate of Convergence for Marginal] For any t ∈ N we have:

‖P?(a | s)− 1

t

t∑
n=1

Pn(a | s)‖2 ≤
1

σmin(s)

√
2

t
DKL(P?(a | s) || P1(a | s)),

and if P1(a | s, d) is a uniform distribution for every s and d, then

‖P?(a | s)− 1

t

t∑
n=1

Pn(a | s)‖2 ≤
1

σmin(s)

√
2 ln |A|

t
.

Proof. We start with Lemma 6 and bound the right hand side as shown:

DKL(P?(a | s) || Pn+1(a | s))−DKL(P?(a | s) || Pn(a | s)) ≤ −DKL(P?(d | s) || Pn(d | s))

≤ −1

2
‖P?(d | s)− Pn(d | s)‖21,

≤ −1

2
‖P?(d | s)− Pn(d | s)2‖22

= −1

2
‖Ps {P?(a | s)− Pn(a | s)} ‖22,

≤ −1

2
σmin(s)2‖P?(a | s)− Pn(a | s)‖22,

where the second step uses Pinsker’s inequality. The third step uses the property of p-norms, specifically, ‖ν‖2 ≤ ‖ν‖1
for all ν. The fourth step, uses the definition of P?(d | s) =

∑
a′∈A P(d | s, a′)P?(a′ | s)) and Pn(d | s) =

∑
a′∈A P(d |

s, a′)Pn(a′ | s). We interpret the notation P?(a | s) as a vector over actions whose value is the probability P?(a | s).
Therefore, PsP?(a | s) represents a matrix-vector multiplication. Finally, the last step, uses ‖Ax‖2 ≥ σmin(A)‖x‖2 for any
vector x and matrix A of compatible shape such that Ax is defined, where σmin(A) is the smallest singular value of A.

Summing over n from n = 1 to t and rearranging the terms we get:

DKL(P?(a | s) || Pt+1(a | s)) ≤ DKL(P?(a | s) || P1(a | s))− 1

2
σmin(s)2

t∑
n=1

‖P?(a | s)− Pn(a | s)‖22.

7Recall that a matrix of the form A>A always have non-negative eigenvalues.

Interactive Learning from Activity Description

As the left hand-side is positive we get:

t∑
n=1

‖P?(a | s)− Pn(a | s)‖22 ≤
2

σmin(s)2
DKL(P?(a | s) || P1(a | s)).

Dividing by t and applying Jensen’s inequality (specifically, E[X2] ≥ E[|X|]2) we get:

1

t

t∑
n=1

‖P?(e)− Pn(e)‖2 ≤
1

σmin(s)

√
2

t
DKL(P?(a | s) || P1(a | s)) (14)

Using the triangle inequality, the left hand side can be bounded as:

1

t

t∑
n=1

‖P?(a | s)− Pn(a | s)‖2 ≥ ‖P?(a | s)−
1

t

t∑
n=1

Pn(a | s)‖2 (15)

Combining the previous two equations proves the main result. Finally, note that if P1(a | s, d) = 1/|A| for every value of
s, d, and a, then P1(a | s) is also a uniform distribution over actions. The initial KL-divergence is then bounded by ln |A| as
shown below:

DKL(P?(a | s) || P1(a | s)) = −
∑
a∈A

P?(a | s) ln
1

|A|
+
∑
a∈A

P?(a | s) lnP?(a | s) ≤ ln |A|,

where the second step uses the fact that entropy of a distribution is non-negative. This completes the proof.

A.2. Proof of Convergence to Near-Optimal Policy

Finally, we discuss how to learn P?(a | s, d) once we learn P?(a | s). Since we only derive convergence of running average
of Pn(a | s) to P?(a | s), therefore, we cannot expect Pn(a | s, d) to converge to P?(a | s, d). Instead, we will show that
if we perform line 4-10 in Algorithm 4 using the running average of policies, then the learned Bayes optimal policy will
converge to the near-optimal policy. The simplest way to accomplish this with Algorithm 4 is to perform the block of code
in line 4-10 twice, once when taking actions according to Pn(a | s, d), and once when taking actions according to running
average policy P̃n(a | s, d) = 1

n

∑n
t=1 P̃t(a | s, d). This will give us two Bayes optimal policy in 10 one each for the

current policy Pn(a | s, d) and the running average policy P̃n(a | s, d). We use the former for roll-in in the future and the
latter for evaluation on held-out test set.

For convenience, we first define an operator that denotes mapping of one agent policy to another.

W operator. Let P(a | s, d) be an agent policy used to generate data in any epoch of EPOCHADEL (line 5-9). We define
the W operator as the mapping to the Bayes optimal policy for the optimization problem solved by EPOCHADEL in line 10
which we denote by (WP). Under the realizability assumption (Assumption 1), the agent learns the WP policy when
M →∞. Using Lemma 2 and Lemma 3, we can verify that:

(WP)(a | s, d) =
P?(d | [s, a])P(a | s)∑

a′∈A P?(d | [s, a′])P(a′ | s)
, where P(a | s) =

∑
d

P?(d | s)P(a | s, d).

We first show that our operator is smooth around P?(a | s).

Lemma 8 (Smoothness of W). For any start state s and description d ∈ supp P?(d | s), there exists a finite constant Ks

such that:

‖WP(a | s, d)−WP?(a | s, d)‖1 ≤ Ks‖P(a | s)− P?(a | s)‖1.

Interactive Learning from Activity Description

Proof. We define P(d | s) =
∑
a′∈A P?(d | s, a′)P(a′ | s). Then from the definition of operator W we have:

|WP(a | s, d)−WP?(a | s, d)|1

=
∑
a∈A

∣∣∣∣P?(d | [s, a])P(a | s)
P(d | s)

− P?(d | [s, a])P?(a | s)
P?(d | s)

∣∣∣∣
=
∑
a∈A

P?(d | [s, a])
|P(a | s)P?(d | s)− P?(a | s)P(d | s)|

P(d | s)P?(d | s)

≤
∑
a∈A

P?(d | [s, a])P(a | s) |P
?(d | s)− P(d | s)|
P(d | s)P?(d | s)

+
∑
a∈A

P?(d | [s, a])
|P(a | s)− P?(a | s)|

P?(d | s)

=
|P?(d | s)− P(d | s)|

P?(d | s)
+
∑
a∈A

P?(d | [s, a])
|P(a | s)− P?(a | s)|

P?(d | s)

≤ 2
∑
a∈A

P?(d | [s, a])
|P(a | s)− P?(a | s)|

P?(d | s)
, (using the definition of P(d | s))

≤ 2

P?(d | s)
‖P(a | s)− P?(a | s)‖1.

Note that the policy will only be called on a given pair of (s, d) if and only if P?(d | s) > 0, hence, the constant is bounded.
We define Ks = maxd

2
P?(d|s) where maximum is taken over all descriptions d ∈ supp P?(d | s).

Theorem 9 (Convergence to Near Optimal Policy). Fix t ∈ N, and let P̃t(a | s, d) = 1
t

∑t
n=1 Pn(a | s, d) be the average

of the agent’s policy across epochs. Then for every start state s and description d ∈ supp P?(d | s) we have:

lim
t→∞

(W P̃t)(a | s, d) = P?(a | s, d).

Proof. Let P̃t(a | s) =
∑
d P?(d | s)P̃t(a | s, d). Then it is easy to see that P̃t(a | s) = 1

t

∑t
n=1 Pn(a | s). From Theo-

rem 7 we have limt→∞ ‖P̃t(a | s)− P?(a | s)‖2 = 0. As A is finite dimensional, therefore, ‖ · ‖2 and ‖ · ‖1 are equivalent,
i.e., convergence in one also implies convergence in the other. This implies, limt→∞ ‖P̃t(a | s)− P?(a | s)‖1 = 0.

From Lemma 8 we have:

lim
t→∞

‖(W P̃t)(a | s, d)− (WP?)(a | s, d)‖1 ≤ Ks lim
t→∞

‖P̃t(a | s)− P?(a | s)‖1 = 0.

This shows limt→∞(W P̃t)(a | s, d) = (WP?)(a | s, d). Lastly, we show that the optimal policy P?(a | s, d) is a fixed
point of W :

(WP?)(a | s, d) =
P?(d | s, a)P?(a | s)∑

a′∈A P?(d | s, a′)P?(a′ | s)
=

P?(d, a | s)∑
a′∈A P?(d, a′ | s)

=
P?(d, a | s)
P?(d | s)

= P?(a | s, d).

This completes the proof.

B. Detailed Comparison with Related Works that use Language Description Feedback
Recently, several papers have proposed using language description feedback for speeding up reinforcement learning (Jiang
et al., 2019) or aiding exploration of new skills (Colas et al., 2020). While also employing this type of feedback, our work
differs from these papers in its (i) research goal, (ii) theoretical study, and (iii) empirical contributions.

Research Goal. The goal of these papers is to use description feedback to create additional training data for a reward-based
learning process. In Jiang et al. (2019), the agent has access to a (binary) reward function that it can query. In Colas et al.
(2020), the agent does not have access to a reward function, but it is given an exhaustive list of descriptions of each execution.
This helps the agent easily construct a reward function and additional examples. In addition, given an execution, the teacher
in these papers returns a list of multiple descriptions of the execution.

Interactive Learning from Activity Description

Bathroom Living room

Bedroom

Kitchen

Office

Exit the
bedroom and

turn right. Enter
the living room

and stop next to
the sofa.

(a) Vision-language navigation (NAV): a (robot) agent fulfills a navigational
natural-language request in a photo-realistic simulated house. Locations in
the house are connected as a graph. In each time step, the agent receives a
photo of the panoramic view at its current location (due to space limit, here
we only show part of a view). Given the view and the language request, the
agent chooses an adjacent location to go to. On average, each house has
about 117 locations.

(b) Word modification via regular expressions (REGEX):
an agent is given an input word and a natural-language
request that asks it to modify the word. The agent outputs
a regular expression that follows our specific syntax. The
regular expression is executed by the Python’s re.sub()
method to generate an output word.

Figure 3. Illustrations of the two request-fulfilling problems that we conduct experiments on.

In contrast, our paper directly investigates the possibility of learning from humans through pure natural-language communi-
cation. To realistically mimic this scenario, our setup is made more restricted than in these papers: no rewards are given to
the agent, and the teacher only gives the agent a single description for each execution.

Having access to a reward function and a list of descriptions adds additional supervision to the language learning problem.
Given an execution ê of a request d?, suppose a description d̂ of ê is returned along with a reward r. If r = 1 (i.e., the
execution fulfills the request), the agent can infer that d? and d̂ both describe the same execution ê, without having to ground
their meanings to the execution. If r = 0, the agent can form a negative example d? 6= d̂. Similarly, if multiple descriptions
is returned, the agent knows that these descriptions all refer to the same execution. Therefore, the language learning problem
in these papers are strongly supervised with parallel examples that the agent can exploit to learn a representation of the
language space.

In our setup, because the reward is not present and only a single description is given, the agent cannot directly infer a
relationship between the description and the request. Only the relationship between the description and the execution can be
assumed. Thus our setup is designed such that language learning relies mostly on grounding to execution.

Theoretical Study. In these papers, the learning problem is ultimately reduced to reinforcement learning. In contrast, our
main algorithm ADEL performs density estimation instead of reduction of reinforcement learning. The primary goal of
ADEL is to recover the request-conditioned execution distribution. ADEL learns effectively in the face of uncertainty of the
teacher, which is not modeled by these papers. In addition, we present novel theoretical analysis of the learning dynamic of
our algorithm, and gain insights on what conditions the teacher should satisfy to make learning possible.

Empirical Contributions. Last but not least, our paper makes two important empirical contributions:

◦ We demonstrate that our algorithm can achieve success rates comparable to imitation learning in photo-realistic
environments with rich natural language descriptions. In contrast, these papers conduct evaluation on toy environments
with templated language, and do not compare with imitation learning.
◦ We present a scalable data-driven strategy for simulating natural-language description feedback. In contrast, these

papers employ rule-based programs to derive descriptions.

Interactive Learning from Activity Description

C. Problem settings
Figure 3 illustrates the two problems that we conduct experiments on.

C.1. Vision-Language Navigation

Environment Simulator and Data. We use the Matterport3D simulator and the Room-to-Room dataset8 developed by
Anderson et al. (2018). The simulator photo-realistically emulates the first-person view of a person walking in a house.
The dataset contains tuples of human-generated English navigation requests annotated with ground-truth paths in the
environments. To evaluate on the test set, the authors require submitting predictions to an evaluation site9, which limits the
number of submissions to five. As our goal is not to establish state-of-the-art results on this task, but to compare performance
of multiple learning frameworks, we re-split the data into 4,315 simulation, 2,100 validation, and 2,349 test data points. The
simulation split, which is used to simulate the teacher, contains three requests per data point (i.e. |Dn| = 3). The validation
and test splits each contains only one request per data point. On average, each request includes 2.5 sentences and 26 words.
The word vocabulary size is 904 and the average number of optimal actions required to reach the goal is 6.

Simulated Teacher. We use SDTW (Magalhaes et al., 2019) as the perf metric and set the threshold τ = 0.5. The
SDTW metric re-weights success rate by the shortest (order-preserving) alignment distance between the predicted and the
ground-truth paths, thus capturing the fidelity of the agent execution to the intent of the input request.

Approximate marginal Pπω (e | s1). The approximate marginal is a function that takes in a start location s1 and randomly
samples a shortest path on the environment graph that starts from s1 and has (unweighted) length between 2 and 6.

C.2. Word Modification via Regular Expressions

Regular Expression Compiler. We use Python 3.7’s re.sub(pattern, replace, string) method as the
regular expression compiler. The method replaces every substring of string that matches a regular expression pattern
with the string replace. A regular expression predicted by our agent â1:H has the form “pattern@replace”, where
pattern and replace are strings and @ is the at-sign character. For example, given the word embolden and the request
“replace all n with c”, the agent should ideally generate the regular expression “()(n)()@c”. We then split the regular
expression by the character @ into a string pattern = “()(n)()” and a string replace = “c”. We execute the command
re.sub(‘()(n)()’, ‘c’, ‘embolden’) to obtain the output word emboldec.

Data. We use the data collected by Andreas et al. (2018). The authors presented crowd-workers with pairs of input and
output words where the output words are generated by applying regular expressions onto the input words. Workers are
asked to write English requests that describe the change from the input words to the output words. In the end, the authors
extracted 1,917 request templates from the human-generated requests. Each request template is annotated with a regular
expression template that it describes. For example, a template has the form add an AFTER to the start of words beginning
with BEFORE, where AFTER and BEFORE can be replaced with latin characters to form a request. Since the original dataset
is not designed to evaluate generalization to previously unseen request templates, we modified the script provided by the
authors to generate a new dataset where the simulation and evaluation requests are generated from disjoint sets of request
templates. We select 110 regular expressions templates that are each annotated with more than one request template. Then,
we further remove pairs of regular expression and request templates that are mistakenly paired. We end up with 1111 request
templates describing these 110 regular expression templates. We use these templates to generate pairs of requests and regular
expressions. In the end, our dataset consists of 114,503 simulation, 6,429 validation, and 6,429 test data points. The sets of
simulation, validation, and test request templates are disjoint.

Simulated Teacher. We extend the performance metric in §5.1 perf to evaluating multiple executions. Concretely, given
executions {winp

j , ŵout
j }Kj=1, the metric counts how many pairs where the predicted output word matches the ground-truth:∑K

j=1 1
{
ŵout
j = wout

j

}
. We set the threshold τ = K.

8https://github.com/peteanderson80/Matterport3DSimulator/blob/master/tasks/R2R/data/
download.sh

9https://eval.ai/web/challenges/challenge-page/97/overview

https://docs.python.org/3.9/library/re.html#re.sub
https://github.com/peteanderson80/Matterport3DSimulator/blob/master/tasks/R2R/data/download.sh
https://github.com/peteanderson80/Matterport3DSimulator/blob/master/tasks/R2R/data/download.sh
https://eval.ai/web/challenges/challenge-page/97/overview

Interactive Learning from Activity Description

Algorithm 5 Interactive learning from activity descriptions (experimental version).

1: Input: teacher model PT (d | e), approximate marginal Pπω (e | s1), mixing rate λ ∈ [0, 1]
2: Initialize agent policy πθ : S × D → ∆(A)
3: Initialize agent policy πβ : S × D → ∆(A)
4: for n = 1, 2, · · · , N do
5: Word samples q = (R, d?, s1) ∼ P?(·)
6: Agent generates ê ∼ Pπβ (· | s1, d

?)

7: Teacher generates description d̂ ∼ PT (· | ê)
8: Agent samples ẽ ∼ Pπω (· | s1)
9: Compute losses:

L(θ) =
∑

(s,âs)∈ê

log πθ

(
âs | s, d̂

)
L(β) = λ

∑
(s,ãs)∈ẽ

log πβ

(
as | s, d̂

)
+ (1− λ)

∑
(s,ãs)∈ê

log πβ

(
ãs | s, d̂

)
10: Compute gradients∇L(θ) and ∇L(β)
11: Use gradient descent to update θ and β with∇L(θ) and∇L(β), respectively

return π : s, d 7→ argmaxa πθ(a | s, d)

Approximate marginal Pπω (e | s1). The approximate marginal is a uniform distribution over a dataset of (unlabeled)
regular expressions. Each regular expression is generated using the template10 used by Andreas et al. (2018) to construct
their dataset.

D. Practical Implementation of ADEL

In our experiments, we employ the following implementation of ADEL (Alg 5), which learns a policy πβ such that
Pπβ (e | s1, d) approximates the mixture P̃(e | s1, d) in Alg 3. In each episode, we sample an execution ê using the policy

πβ . Then, similar to Alg 3, we ask the teacher PT for a description of ê and the use the pair
(
ê, d̂
)

to update the agent

policy πθ. To ensure that Pπβ approximates P̃, we draw a sample ẽ from the approximate marginal Pπω (e | s1) and update

πβ using a λ-weighted loss of the log-likelihoods of the two data points
(
ẽ, d̂
)

and
(
ê, d̂
)

. We only use
(
ê, d̂
)

to update
the agent policy πθ.

An alternative (naive) implementation of sampling from the mixture P̃ is to first choose a policy between πω (with probability
λ) and πθ (with probability 1 − λ), and then use this policy to generate an execution. Compared to this approach, our
implementation has two advantages:

1. Sampling from the mixture is simpler: instead of choosing between πθ and πω , we always use πβ to generate executions;

2. More importantly, samples are more diverse: in the naive approach, the samples are either completely request-agnostic
(if generated by πω) or completely request-guided (if generated by πθ). As a machine learning-based model that
learns from a mixture of data generated by πω and πθ, πβ can generalize and generate executions that are partially
request-agnostic.

E. Training details
Reinforcement learning’s continuous reward. In REGEX, the continuous reward function is

|wout| − editdistance (ŵout, wout)

|wout|
(16)

10https://github.com/jacobandreas/l3/blob/master/data/re2/generate.py

https://github.com/jacobandreas/l3/blob/master/data/re2/generate.py

Interactive Learning from Activity Description

Repeat H steps

Request
embedding

Request
encoder

(Transformer)

Encoded
Request

Decoder I
(Transformer)

Request

Previous action
embedding

(features of view angle
corresponding to previous action)

Decoder hidden

Decoder logit

Action dist.
(over view angles corresponding to

adjacent locations)

View features
(36 camera angles x

feature_size)

Previous
decoder hidden

Attended view

Decoder II
(Transformer)

Attended
next view

DotAttention

Multi-headedAttention

DotAttention

Time
embedding

(a) Student model

Execution
encoder

(Transformer)

Encoded
execution

Decoder
(Transformer)

Previous
word

View
embedding

Previous word
embedding

Decoder hidden

Decoder logit

Action dist.
(over words)

Action
embedding

Time
embedding

Repeat L steps
(L is description length)

Repeat H steps

Multi-headed
Attention

(b) Teacher model

Figure 4. Student and teacher models in NAV.

Hyperparameter Vision-Language Navigation Word Modification

Student policy πθ and Teacher’s describer model P̃T
Base architecture LSTM Transformer
Hidden size 256 512
Number of hidden layers (of each encoder or decoder) 1 1
Request word embedding size 256 128
Character embedding size - 8
Time embedding size 256 -
Attention heads 8 1
Input-view feature size 2048 -

Teacher simulation
perf metric STDW (Magalhaes et al., 2019) Number of output words matching ground-truths
Number of samples for approximate pragmatic inference (|Dcand|) 5 10
Threshold (τ) 0.5 10

Training
Time horizon (H) 10 40
Batch size 32 32
Learning rate 10−4 10−3

Optimizer Adam Adam
Number of training iterations 25K 30K

Table 5. Hyperparameters for training with the ADEL algorithm.

where wout is the ground-truth output word, ŵout a distance metric, editdistance(.,.) is the string edit distance computed
by the Python’s editdistance module. In NAV, the continuous reward function is

shortest (s1, sg)− shortest (sH , sg)

shortest (s1, sg)
(17)

where s1 is the start location, sg is the goal location, sH is the agent’s final location, and shortest(., .) is the shortest-path
distance between two locations (according to the environment’s navigation graph).

Model architecture. Figure 4 and Figure 5 illustrate the architectures of the models that we train in two problems,
respectively. For each problem, we describe the architectures of the student policy πθ and the teacher’s language model
P̃(d | e). All models are encoder-decoder models but the NAV models use LSTM as the recurrent module while REGEX
models use Transformer.

Hyperparameters. Model and training hyperparameters are provided in Table 5. Each model is trained on a single
NVIDIA V100 GPU. Training with the ADEL algorithm takes about 22 hours for NAV and 17 hours for REGEX.

https://pypi.org/project/editdistance/

Interactive Learning from Activity Description

Input-word
encoder

(LSTM)

Input word
embedding

Request
embedding

Request
encoder

(LSTM)

Encoded
input word

Encoded
request

Decoder
(LSTM)

Previous
characterInput word Request

Previous char.
embedding

DotAttention

DotAttention

Decoder hidden

Decoder logit

Action dist.
(over characters)

Initialize
(first step only)

Repeat H steps

(a) Student model

K embeddings
(K x len x embed_size)

Execution
encoder

(LSTM)

Encoded
execution

Decoder
(LSTM)

Previous
wordK pairs of input and

output words
(each concatenated as ‘input@output’)

(K x len)

Previous word
embedding

Decoder hidden

Decoder logit

Action dist.
(over words)

Mean
embedding

(K x embed_size)

DotAttention

Initialize
(first step only)

Repeat H steps

(b) Teacher model

Figure 5. Student and teacher models in REGEX.

Input word Output word Teacher descriptions

attendant xjtendxjt replace [a] and the letter that follows it with an [x j]
disclaims esclaims if the word does not begin with a vowel , replace the first two letters with [e]
inculpating incuxlpating for any instance of [l] add a [x] before the [l]
flanneling glanneling change the first letter of the word to [g]
dhoti jhoti replaced beginning of word with [j]
stuccoing ostuccoing all words get a letter [o] put in front
reappearances reappearanced if the word ends with a consonant , change the consonant to [d]
bigots vyivyovyvy replace each consonant with a [v y]

Table 6. Qualitative examples in the REGEX problem. We show pairs of input and output words and how the teacher’s language model
P̃(d | e) describes the modifications applied to the input words.

F. Qualitative examples
Figure 6 and Table 6 show the qualitative examples in the NAV and REGEX problems, respectively.

Interactive Learning from Activity Description

Walk towards the desk
and turn left. Walk
towards the desk and
turn left. Walk towards
the large table and stop.

Turn right and go
towards the table.
Stop at the top of
the stairs.

Walk across work room
to table with yellow
chairs. Stop at the
yellow chairs .

(a)

Walk out of the stairs and
face the counter. Turn
right and enter the stairs
by the chair and wait in
the bathroom door.

Walk through the dining
room and past the table.
Walk past the table and
chairs and stop in front of
the table with the glass
table with the glass doors.

Walk up the small set of
stairs in the living room. Stay
left and enter the door to your
left. Turn left down the
hallway and enter the room.
Wait beside the white lamp .

Bathroom

Dining room

(b)

Figure 6. Qualitative examples in the NAV problem. The black texts are the initial requests d? generated by humans. The paths are the
ground-truth paths implied by the requests. The and paths are taken by the agent to explore the environments. Here, we only show
two explorative paths per example. The red texts are the descriptions d̂ generated by the teacher’s learned (conditional) language model
P̃(d | e). We show the bird-eye views of the environments for better visualization; the agent only has access to the first-person panoramic
views at its locations.

