
VideoNavQA: Bridging the Gap between
Visual and Embodied Question Answering
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Abstract
Embodied Question Answering (EQA) is a recently proposed task, where an agent
is placed in a rich 3D environment and must act based solely on its egocentric input
to answer a given question. The desired outcome is that the agent learns to combine
capabilities such as scene understanding, navigation and language understanding
in order to perform complex reasoning in the visual world. However, initial
advancements combining standard vision and language methods with imitation
and reinforcement learning algorithms have shown EQA might be too complex
and challenging for these techniques. In order to investigate the feasibility of
EQA-type tasks, we build the VideoNavQA dataset that contains pairs of questions
and videos generated in the House3D environment. The goal of this dataset is to
assess question-answering performance from nearly-ideal navigation paths, while
considering a much more complete variety of questions than current instantiations
of the EQA task. We investigate several models, adapted from popular VQA
methods, on our benchmark. This establishes an initial understanding of how well
VQA-style methods can perform within the novel EQA paradigm.

1 Introduction

The Embodied Question Answering [7] (EQA) and Interactive Question Answering [11] (IQA) tasks
were introduced as a means to study the capabilities of agents in rich, realistic environments, requiring
both navigation and reasoning to achieve success. Each of these skills typically needs a different
approach [22, 13, 14] that should nevertheless be smoothly integrated with the rest of the system
leveraged by the agent. These abilities are assessed via placing the agent at a random location in a
house environment and asking it a question—successful completion of the task involves the agent
knowledgeably exploring the environment and reasoning about visual stimuli.

Initial attempts at solving the EQA task [7, 8] have thus combined typically used vision (convolutional
neural networks for object detection) and language (question encoding or program generation)
techniques with imitation learning and reinforcement learning. However, these approaches either
suffer from potentially weaker performance than when using a language-only model [1] or are
preceded by additional hand-engineered steps (manually defined sub-goals, imitation learning on
pre-computed expert trajectories). Indeed, even for simple single object questions, the agent is often
unable to advance meaningfully towards the target [8], producing visual streams that cannot be used
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Q: 'How many white chairs are in the dining room/kitchen?'
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Figure 1: High-level description of the VideoNavQA task and our approach: the VQA system receives
an example containing a video of a trajectory inside the house environment and a question, processes
the input and produces an answer.

to answer the query. This suggests that EQA is a highly challenging task which might not be easily
approached from this angle—further investigation is required to realistically assess the gap between
current state-of-the-art and desired human level performance on the EQA performance.

Single-image Visual Question Answering is only now starting to tackle complex reasoning questions,
even in limited settings [14, 17]—it is unclear if existing methods can handle the rich video streams
produced in our task. On the other hand, EQA introduces a navigation component, which can often
lead to video inputs which are uninformative with respect to the question. A natural issue arises:
can the desired tasks be solved with current methods, if we assume the agent is given correct visual
streams (ones that can be used to provide an answer)? In our attempt to answer this question, we
propose a dataset that decouples the visual reasoning from the navigation aspects in the EQA problem.
We introduce the VideoNavQA task, illustrated in Figure 1. While removing the navigation and
action selection requirements from EQA, we increase the difficulty of the visual reasoning component
via a much larger question space, tackling the sort of complex reasoning questions that make QA
tasks challenging [17]. By designing and evaluating several VQA-style models on the dataset2, we
establish a novel way of evaluating EQA feasibility given existing methods, while highlighting the
difficulty of the problem even in the most ideal setting.

2 Related work

To the best of our knowledge, there are no previous works that position themselves at the intersection
of these two paradigms. Instead, VQA and EQA have been tackled from separate angles, with
multiple interesting developments in each case.

Das [7] proposed the EQA-v1 dataset containing 4 types of questions (location, color, color_room,
preposition) that always refer to a single object, the navigation goal of the agent. They train a
model using imitation and reinforcement learning, while revealing that RL finetuning often results in
overshooting the goal. A subsequent improvement is achieved via hierarchical policy learning with
neural modular control [8]—however, this approach uses hand-crafted sub-policies. Anand [1] study
the performance of question-only baselines on EQA-v1, which give better results when the agent is
spawned more than 10 steps away, concluding that existing EQA methods struggle to exploit (and
are often impeded by) the environment. A more recent extension of EQA, multi-target EQA [36],
requires reaching multiple goals to answer the question (for example, comparing the sizes of two
objects in different rooms). The authors build the MT-EQA dataset containing 6 types of questions
and tackle the task by first decomposing each question into small sub-goals, which are more easily
achievable by a model similar to the one used in previous works. Another EQA variant based on
photorealistic environments [33] uses point clouds instead of RGB input; the authors “port” three of
the EQA-v1 questions to Matterport3D. Although in this work we focus on the House3D environment
and EQA, we also note that the IQA task [11] for the AI2Thor [19] environment was introduced with
similar goals. However, this task is defined in single room settings, hence the negative effect of poor
navigation is less severe.

Visual question answering has been extensively tackled over the past few years, with numerous
datasets being released, various algorithms designed and general studies carried out [21, 4]. The
VQA dataset [2] is one such example, containing free-form and open-ended questions about real-life

2The code and dataset are available at https://github.com/catalina17/VideoNavQA/.
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images and abstract scenes that require natural language answers. CLEVR [17] uses a functional
program-based question representation to generate a vast range of questions from synthetic scene
graphs that contain 3–10 objects with restricted variability (3 types, 2 sizes, 2 materials, 8 colors).
More recently, the GQA dataset [15] has been proposed to address some of the issues of current
datasets, including biases in the answer distribution. Widely used VQA models include stacked
attention networks [35], which use the question embedding as a query for attending over the visual
input, multimodal compact bilinear pooling [9], which fuses the text and visual embeddings via
multiplying them in the Fourier space, feature-wise linear modulation [27], which selects informative
visual feature maps via question-based conditioning, its multi-hop extension [30], which conditions
feature maps by iteratively attending over the language input, and compositional attention networks
(MAC) [14], which can reason about the visual input in a multi-step fashion using the memory-
attention-control cell. Graph neural network-based approaches have also been used for VQA tasks
lately [26, 24, 32], operating on the relational representation of objects in the image. The model that
most closely resembles the ones we propose is explored in a multi-turn QA setting [25], where the
system is provided with a dialogue (set of question-answer pairs) and a video—the question encoding
is used to perform both per-frame conditioning and attention over the hidden states of the LSTM
which encodes all the video frames.

Several datasets have been proposed that also consider video question answering in settings such as
movies [31, 23, 20]. They are often provided with rich per-frame annotations (for example, subtitles
in movies). However, these tasks largely focus on identifying actions or other dynamic behaviors
and are distant from the aims of VideoNavQA. Our task considers indoor navigation trajectories
that exhibit rich visual data at each time step. This poses an additional challenge for video QA
systems—these are now required to isolate the relevant information from a large pool of visual
concepts present in each frame and perform more advanced reasoning to answer the extensive variety
of questions designed.

Houses Samples

Train 622 84990
Validation 65 8755

Test 56 7587
Table 1: Dataset split statistics.
The three sets of environments
are disjoint.

EQAv1 What room is the <OBJ> located in?
(Q types: 4) What color is the <OBJ> in the <ROOM>?

VideoNavQA Are both <attr1> <OBJ1> and <attr2> <OBJ2> <color>?
(Q types: 28) How many <attr> <OBJ> are in the <ROOM>?

Is there <art> <attr> <OBJ>?
Table 2: Some examples of the type of question templates found in
EQAv1 versus the more complex existence, counting and compari-
son questions found in VideoNavQA.

3 The VideoNavQA dataset

Our new benchmark aims to study the capabilities of VQA approaches in a variant of the EQA task,
where the agent is required to answer a question while having access to a near-optimal trajectory.
This task can be seen as complementary to the Habitat Challenge [29], where the focus is on
navigation instead of question answering. We use the House3D virtual environment [34] to generate
approximately 101,000 pairs of videos and questions; the dataset contains 28 types of questions
belonging to 8 categories (see Figure 2), with 70 possible answers. The complexity of our questions
is far beyond that of similar tasks using the same generation method (such as CLEVR)3.

Video generation and ground truth extraction We use the environment grid to compute shortest
paths between arbitrary locations in two different rooms, then render the trajectories in House3D. The
ground truth information is obtained by indexing the objects and rooms that are seen in each frame.

Question generation Similarly to other synthetic benchmark datasets (EQA-v1 [7], CLEVR [17]),
we generate questions according to functional, template-style representations (e.g. “How many
<attr> <obj_type-pl> are in the <room_type>?”). First, we build sets of possible values for each tag.
For example, if the current template contains a <room_type> tag and we have only seen a kitchen
and a living room on our trajectory, then the set of possible instantiations is {kitchen, living room}.
To generate a question, we then randomly assign each tag a value from its set. Finally, we run the
functional program to compute whether the question is valid and can be answered from ground truth.

3The full list of question types and dataset counts can be found in the appendix.
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VideoNavQA	question	category	distribution

query_color:	5.7%

query_obj:	5.9%

compare_size:	6.8%

compare_count:	8.0%

query_room:	9.4%

count:	15.4%
exist:	22.8%

equals_attr:	26.0%

meta-chart.com

Figure 2: VideoNavQA dataset distribution. (Left:) Proportions for each question category. (Middle:)
Question lengths (maximum is 56). (Right:) Video lengths (maximum is 140).
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Figure 3: (Left:) Concat-CNN3D processes the entire video. (Right:) Concat-CNN2D aggregates
frame features via an LSTM. Both merge the result with the question embedding.

4 Models

We have designed the VideoNavQA task to address the EQA challenge from an alternative perspective,
requiring a smaller degree of fusion among different classes of methods. In this section, we describe
the architectures used to establish more realistic expectations on EQA performance: several essential
baselines and new models inspired by previous successes in VQA and computer vision.

Language models We evaluate two simple yet powerful baselines: a 1-layer LSTM [12] and a
bag-of-words (BoW) [28]. These reveal the inherent biases in the environment distribution and place
a lower bound on the desired performance of models that can usefully exploit visual information.

Concatenation models We integrate the LSTM model with two vision models (VGG-like and
C3D-like architectures), in order to derive a joint representation of the obtained features. We achieve
this by concatenating the final question representation with their respective video representations
(Concat-CNN2D/3D; see Figure 3). An MLP then obtains the most likely answer via softmax.

FiLM-based reasoning Feature-wise linear modulation (FiLM) [27] directly uses the question
embedding to scale and shift the feature maps of a CNN pipeline taking the image as input. Here,
we extend FiLM as per Figure 4: each frame is conditioned independently by a fixed number of
ResBlocks [27]. We obtain a series of visual features and aggregate them using either (a) attention
(FiLM-AT), where we apply a linear transformation to the features from each frame, then use recurrent
attention [3, 6] to obtain a final encoding, or (b) global max-pooling (FiLM-GP), where we apply a
1× 1 convolution, followed by feature-wise max-pooling over all frames.

Temporal multi-hop FiLM The multi-hop extension of FiLM [30] modulates CNN feature maps
by attending over the hidden states of the question encoder; the attention mechanism is initialized with
the context vector from the previous CNN depth level. We propose a temporal multi-hop approach
that computes FiLM parameters for all ResBlocks at frame t by initializing the attention context with
the one from t− 1, attending over question encoder hidden states, obtaining the new context vector
and passing it through a linear layer. The FiLM parameters at a certain time step are thus based on
what has already been computed for previous frames, modelling the temporal structure of the input.

MAC Compositional Attention Networks (MAC) [14] have achieved excellent performance in several
VQA tasks [14, 15, 4]. Here we adapt this by applying a MAC model after a 2D-CNN and integrating
the resulting frame embeddings over time using an LSTM.

4



FiLM decoder (linear)

Re
sB
lo
ck

Frame t

FiLM encoder (LSTM)

Question

Frame t 
representation

Re
sB
lo
ck

Re
sB
lo
ck

per-frame 
processing

An
sw

er

Ta
il

Context(t)

Re
sB
lo
ck

Frame t

Question

Frame t 
representation

Re
sB
lo
ck

Re
sB
lo
ck

per-frame 
processing

An
sw
er

Ta
il

Context(t-1)

Attention
(encoder states)

Encoder

Figure 4: (Left:) FiLM across time. Frames are processed by the ResBlocks, then resulting features
are aggregated to answer the question. (Right:) Temporal Multi-hop. The FiLM parameters are
computed from the current attention context, which is initialized with the one from the previous
frame. Temporal summarization is achieved via global max-pooling.

Model Accuracy All Yes/No Other Num
BoW 49.02 57.67 30.57 40.21

LSTM 56.49 68.36 35.27 38.90

Concat-CNN3D 64.00 72.99 49.12 49.10
Concat-CNN2D 64.47 73.50 49.20 49.59

FiLM-GP 63.79 72.91 47.71 50.00
FiLM-AT 64.08 72.93 49.54 49.26

Temporal multi-hop 63.53 71.81 49.54 50.16
MAC 62.32 69.02 51.37 50.99

Table 3: Results for all models reported in terms of accuracy on the VideoNavQA test set. We also
use standard VQA reporting of Yes/No, other, and number categories [2].

5 Experiments

We evaluate the models described in the previous section on the VideoNavQA task and produce an
initial expectation of the feasibility of EQA.4 According to the results in Table 3, the LSTM proves to
be the most powerful language model, achieving 7.5% more than the bag-of-words. Surprisingly,
Concat-CNN2D manages to outperform the other models, obtaining an accuracy of 64.47%. Figure 5
provides a more detailed analysis of the model capabilities across the eight VideoNavQA sub-tasks.
Overall, the results suggest that the proposed models manage to exploit the visual context of the
environment, improving by a significant margin over the language-only baselines. This finding
represents an initial validation of the feasibility of the VideoNavQA task, ensuring that the manner
in which we constructed the dataset allows the visual reasoning process to be generalizable across
new environments. A more focused investigation of novel VQA techniques is further required to
accommodate the rich dimensionality and contextual information encountered in the videos.

Figure 5: Comparative performance of the models on each question category. Questions from the top
row categories have binary answers, whereas the ones from the bottom row are answered by integer
counts, room types, colors and object types, respectively.

4The detailed model configurations can be found in the appendix.
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Appendix

Detailed breakdown of question templates and respective counts

• Equals<attr>
’Are all <attr> <obj_type-pl> <color>?’: 4014
’Are all <attr> <obj_type-pl> in the <room_type>?’: 3811
’Are all <attr> things <obj_type-pl>?’: 3539
’Are both the <attr1> <obj_type1> and the <attr2> <obj_type2> <color>?’: 3968
’Are both the <attr1> <obj_type1> and the <attr2> <obj_type2> in the <room_type>?’: 3804
’Are the <attr1> <obj_type1> and the <attr2> <obj_type2> the same color?’: 4018
’Is the <attr1> thing <rel> the <attr2> <obj_type2> <art> <obj_type1>?’: 3315

• Count
’How many <attr1> <obj_type1-pl> are in the room containing the <attr2> <obj_type2>?’:
3999
’How many <attr> <obj_type-pl> are in the <room_type>?’: 3763
’How many <obj_type-pl> are <attr>?’: 4120
’How many rooms have <attr> <obj_type-pl>?’: 3834

• Compare<count>
’Are there <comp> <attr1> <obj_type1-pl> than <attr2> <obj_type2-pl>?’: 4058
’Are there as many <attr1> <obj_type1-pl> as there are <attr2> <obj_type2-pl>?’: 4100

• Compare<size>
’Is the <attr1> <obj_type> <comp_rel> than the <attr2> one?’: 3272
’Is the <room_type1> <comp_rel> than the <room_type2>?’: 3148

• Exist
’Is there <art> <attr> <obj_type>?’: 4122
’Is there <art> <room_type>?’: 3335
’Is there a room that has set(<art> <attr{}> <obj_type{}>)?’: 3877
’Is there set(<art> <attr{}> <obj_type{}>) in the <room_type>?’: 4025
’Is there set(<art> <attr{}> <obj_type{}>)?’: 4107
’Is there set(<art> <room_type{}>)?’: 3750

• Query<color>
’What color is the <attr1> <obj_type1> <rel> the <attr2> <obj_type2>?’: 2178
’What color is the <attr> <obj_type>?’: 3592

• Query<obj_type>
’What is the <attr1> thing <rel> the <attr2> <obj_type2>?’: 3119
’What is the <attr> thing?’: 2883

• Query<room_location>
’Where are the set(<attr{}> <obj_type{}>)?’: 3816
’Where is the <attr1> <obj_type1> <rel> the <attr2> <obj_type2>?’: 2284
’Where is the <attr> <obj_type>?’: 3481

Evaluation setup

All models are trained with the Adam optimizer [18], by monitoring the validation accuracy.

Language-only models The recurrent model has an embedding layer of 512 units and an LSTM
with 128 hidden units, whereas the BoW model uses an embedding size of 128. We use a batch size
of 1024 and learning rates of 5e−5 and 1e−5, respectively.

Concatenation models The C3D-like sub-network has 3 {convolutional, max-pool, batch normal-
ization (BN)} blocks with 64, 128, and 128 output feature maps, respectively, kernel size (1, 2, 2) for
the first block and (4, 4, 4) otherwise. The classifier has 2 linear layers with 2048 and 128 hidden
units respectively. BN [16] and ReLU [10] activations are used for each layer. For the VGG-like
sub-network, we use a VGG configuration with 5 {convolutional, max-pool} blocks with 16, 32, 64,
128 and 128 channels, respectively, and kernel size 2.
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FiLM-extended models The models that process each frame in a FiLM fashion have 4 (GP) or 5
(AT) ResBlocks with 1024 channels, preceded by a 1 × 1 convolution on the input. The attention
mechanism for FiLM AT has 128 hidden units, whereas the global max-pooling classifier obtains
32 channels via the 1× 1 convolution. The temporal multi-hop model has 3 ResBlocks and 64 tail
channels. It is trained with a learning rate of 5e−5 and a batch size of 16, whereas the other two use
1e−4 and 32.

Model hyperparameters

In order to find the best performance on VideoNavQA, we have ran several combinations of hyperpa-
rameters for each of the described models. We detail settings evaluated on the validation set below.
The average running time per epoch for the visual reasoning models is approximately 5 hours on a
16GB Tesla P100 GPU.

LSTM Embedding size: {128, 256, 512, 1024}. Learning rate: {5e−5, 1e−4}.

BoW Embedding size: {128, 256, 512}. Learning rate: {1e−5, 5e−5}.

FiLM GP Number of ResBlocks: {3, 4, 5}. Learning rate: {1e−4, 1e−3}. Number of classifier
channels: {32, 64}.

FiLM AT Number of ResBlocks: {3, 4, 5}. Attention hidden size: {128, 256}. Learning rate:
{1e−5, 1e−4}.

Multi-hop Number of ResBlocks: {3, 4, 5}. Learning rate: {1e−5, 1e−4}. Number of classifier
channels: {32, 64}.

MAC Number of CNN Layers: {2,3}. Width: {512, 1024}. MAC time steps: {5,6}. We adapt the
ramp-up/down Adam learning schedule popularly used in VQA [5], ramping up the learning rate to
1e−4 in the first 2 epochs and then decaying it to 1e−5 after epoch 10 (training is done for a total of
15 epochs).
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