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Abstract

Vision-and-Language Navigation (VLN) is a natural language grounding task
where an agent learns to follow natural language instructions to navigate to specified
destinations in photo-realistic environments. A successful agent should not only
produce high-fidelity navigation trajectories matched with instructions but also
stop at the correct location. However, existing methods mainly focus on alignment
between trajectories and instructions, but treat STOP action equally as other actions
in the action space. This results in undesirable behaviors that the agent often fails to
stop at designated places even though it might be on the right path. Therefore, we
propose a two-branch policy model to treat STOP and the other actions differently
and thus learn to stop better. Particularly, a direction decider is used to choose
directions at key points and a stop indicator is employed to produce stop or non-
stop signals. Moreover, to alleviate the unbalanced occurrence of STOP and other
actions, we use a weighted cross-entropy loss to force the agent to pay more
attention to STOP. We demonstrate that our two-branch policy model can not
only make better decisions on where to go next but also stop more accurately.
Experiments show that our approach achieves new state-of-the-art results on the
TOUCHDOWN dataset, outperforming the baseline model by 5.73% (absolute
improvement) on Success weighted by Edit Distance (SED).

1 Introduction

Recently, Vision-and-Language Navigation [1, 2], where an agent is required to navigate in real
photo-realistic environments by following natural language instructions, is receiving more and more
attention. This task is particularly challenging, as the agent must have a deep understanding of both
surrounding visual scene and natural language instructions and aligning them well to maximize the
supervision from the instructions. Various approaches have been proposed for VLN [14, 12, 6, 10, 9,
3, 15], and most of them focus on the alignment between trajectories and instructions and learn a
policy that treats all actions equally. However, this can cause an undesirable behavior that the agent
fails to stop at the target although it might be on the right path, because the STOP action is severely
underestimated.

We argue that STOP is more important than other actions and deserves special treatment. First,
contrary to errors on other actions, which can be fixed later in the journey, the price of stopping
at a wrong location is high because producing STOP terminates the episode and there will be no
chance to fix a wrong stop. Second, The statistical count of STOP is much lower than other actions
as it only appears once per episode. Thus STOP will receive less attention if we treat all actions
equally and ignore the difference of occurrence frequency. Moreover, STOP and other actions need
different understandings of the dynamics between the instruction and the visual scene. Both require
the alignment between trajectories and instructions, but STOP would emphasize the completeness
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Figure 1: Overview of our two-branch policy model.

of the instruction and the matching between the inferred target and the surrounding scene, while
choosing directions requires a planning ability to imagine the future trajectory.

Therefore, in this paper, we introduce the learning to stop principle to address the problems above.
Specifically, we propose a two-branch policy model, consisting of a Stop Indicator to determine
whether to stop and a Direction Decider to choose directions to go at each time step. Furthermore, we
weigh STOP more than other actions with a Weighted Cross-Entropy Loss function for the two-branch
policy, forcing the agent to pay more attention to where to stop. We conduct the experiments on
a challenging language-grounded street-view navigation dataset, TOUCHDOWN [2]. Experimental
results show that our proposed approach significantly improves the performance over the baseline
model on all metrics and achieves the new state-of-the-art on the TOUCHDOWN dataset.

2 Approach

Fig. 1 illustrates the framework of our two-branch policy model, which is adapted from RCONCAT [2].
We detail each component below.

2.1 Visual and Text Encoder

As shown in the left part of the Fig. 1, we use two encoders for encoding visual scene and language
instruction respectively. Specifically, for visual part, we apply a convolutional neural network (CNN)
[7] as the visual encoder to extract visual representation vt from current visual scene at time step
t. For the text part, we adopt an LSTM [4] as text encoder to get the instruction representation
X = {x1,x2, ...,xl}, where xl denotes the l-th word feature vectors in the instruction. We then use
a soft-attention [13] module to get the grounded textual feature xt at time step t:

αt,l = softmax((Wxht−1)
Txl) and xt =

∑
l

αt,lxl (1)

where Wx denotes parameters to be learnt, αt,l denotes attention weight over l-th feature vector at
time t, and ht−1 denotes hidden context of previous time step. Based on visual representation vt,
grounded textual feature xt at time step t, and previous action embedding at−1, the agent produces
the hidden context of the current step ht:

ht = LSTM([xt,vt,at−1]) (2)

2.2 Two-Branch Policy

Unlike the existing methods that view all the actions equivalently important, we propose a two-branch
policy model to learn where to stop and which directions to go next with separate modules.

Direction Decider The direction decider is employed to select actions from the action space
(go forward, turn left, and turn right). Empirically, we observe that when navigating in urban
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Table 1: Experimental results on development and test sets.

Development Test

Method TC↑ SPD↓ SED↑ CLS↑ SDTW↑ TC↑ SPD↓ SED↑ CLS↑ SDTW↑
Random 0.15 26.63 0.05 4.65 0.06 0.36 26.94 0.01 4.44 0.00
RCONCAT [2] 10.49 19.99 10.10 47.44 9.96 12.07 19.07 11.75 48.89 11.67

Ours
ARC 15.33 18.61 14.62 48.56 14.48 14.13 19.41 13.62 48.02 13.50
ARC + two-branch 19.35 16.87 18.77 55.99 18.72 17.83 18.32 17.48 54.55 17.47

environments, the agent only needs to choose directions at the intersections it encounters in the
journey. Here we define nodes with more than two neighbors as intersections. Therefore, we view
these intersections as key points on the road and assume that the direction decider only needs to
choose directions at key points and always goes forward otherwise. So at time step t, if the agent is at
a key point, it will be activated and takes the hidden context ht as well as a learned time embedding t
as input and outputs the probability of each action in its action space:

pt,k = softmax(g1([ht, t])) (3)
where g1 is a linear layer and p̂t,k is the probability of each action at time step t.

Stop Indicator The stop indicator produces stop or non-stop signals at every time step. At time
step t, the stop indicator takes hidden context ht and time embedding t as input and outputs the
probabilities of stop and non-stop signals:

st,1, st,2 = softmax(g2([ht, t])) (4)
where g2 is a linear layer, and st,1 as well as st,2 are the probabilities of non-stop and stop signals at
time step t, respectively. If the stop indicator produces stop signal, the agent will stop immediately.
Otherwise, the direction decider will choose a direction to go next.

2.3 Learning

In the TOUCHDOWN [2] dataset, every example is a pair of a ground-truth trajectory from starting
point zstart to target point ztarget in the urban environment and a natural language instruction
describing the trajectory. Unlike R2R [1] dataset, the trajectories in TOUCHDOWN are not the shortest
paths from zstart to ztarget, but have more twists and turns. Therefore, we use Teacher-Forcing [8]
method to train the model. We have two loss functions, Ldirection and Lstop, for direction decider
and stop indicator, respectively. Ldirection is a regular cross-entropy loss function

For the stop indicator, we use a weighted cross-entropy loss, where we assign a greater weight for the
stop signal in the loss function and therefore force the agent to pay more attention to the stop action
(which appears much less frequently than non-stop), in formula,

Lstop =
∑
t

−ot,1log(st,1)− λot,2log(st,2) (5)

where ot,1 and ot,2 = 1− ot,1 are the ground-truth non-stop and stop signals, and λ is the weight for
the stop signal ot,2. Finally, the agent is optimized with a weighted sum of two loss functions:

Lloss = γLdirection + (1− γ)Lstop (6)
where γ is the weight balancing the two losses.

3 Experiments

3.1 Experimental Settings

TOUCHDOWN Dataset We evaluate our approach on the TOUCHDOWN dataset [2] for vision-and-
language navigation in real-world urban environment. The navigation environment in the dataset
includes 29,641 panoramas and 61,319 edges from New York City, where panoramas are connected in
a graph-like structure with undirected edges. The dataset contains 9,326 examples of navigation tasks,
which are pairs of ground-truth trajectory and natural language instruction describing the trajectory.
As is reported in [2], the dataset is split into training (6,526 examples), development (1,391) and test
(1,409) sets.
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Table 2: Ablation study results on the development set.

Development

# Model TC↑ SPD↓ SED↑ CLS↑ SDTW↑
1 ARC + two-branch 19.35 16.87 18.77 55.99 18.72
2 - one branch 15.40 18.33 14.92 52.00 14.86
3 - no key points 15.18 18.17 14.55 51.67 14.44
4 - no weighting 12.65 21.60 12.22 47.91 12.20

Evaluation Metrics Following [2], We report three evaluation metrics for the VLN task in urban
environments: Task Completion (TC), Shortest-path Distance (SPD) and Success weighted by Edit
Distance (SED). We also add another two metrics evaluating the alignment between trajectories
produced by agent and the natural language instructions: Coverage weighted by Length Score (CLS)
[5] and Success weighted by normalized Dynamic Time Warping (SDTW) [11].

3.2 Experimental Results

Table 1 shows the results comparison between our approach and the baselines: (1) Random: randomly
take actions at each time step. (2) RCONCAT the best-performing baseline model as reported in the
original dataset paper [2]. We first modify the RCONCAT model by equipping it with an attention
mechanism on instruction representation to get our Attention-RConcat (ARC) model that outperforms
RCONCAT. Then we integrate ARC with our proposed two-branch policy module, which further
boosts the performances on all metrics and achieves the best results on both development and test sets.
The consistent improvements in goal-oriented metrics (TC and SED) and path alignment metrics
(CLS and SDTW) validate that our two-branch policy model learns not only where to stop but also
where to go better.

3.3 Ablation Study

We conduct an ablation study to illustrate the effect of each component on the development set in
Table 2. Row 2-4 shows the influence of each component by removing them respectively from the
final model (ARC with two-branch policy module). Evidently, removing any of the components
results in worse performance, which proves the indispensability of all components in our model.

Row 2 shows the results of ARC with only one policy module which will disable turn left and
turn right actions when the agent is not at key points. The results evaluate the effectiveness of the
two-branch structure for providing different sub-policies for STOP and other actions. Row 3 shows
the results of the model whose Direction Decider makes decisions at every time step instead of only
at key points. The results are intuitive because when navigating in urban environments, allowing the
agent to choose directions at non-key points, where the agent mostly just goes forward, will produce
interference to the agent and thus decreases its ability to choose right directions at key points. Row 4
shows the results where the weight of the stop signal is the same as the non-stop signal in the loss
function of Stop Indicator. The worst results validate the importance of STOP action. When stop
and non-stop signals are treated equally, the agent will pay more attention to non-stop because of its
higher occurrence frequency than stop.

4 Conclusion

In this paper, we investigate the importance of the STOP action and study how to learn a policy that
can not only make better decisions on where to go but also stop more accurately. We propose a
two-branch policy module for the vision-and-language navigation task that is situated in street-view
urban environments and validate its effectiveness. We believe that our two-branch policy module is
modular and generalizable to be plugged into other VLN models and further boost their ability to
learn to stop.
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