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Abstract

Zero-Shot Learning (ZSL) is a classification task where some classes referred
as unseen classes have no labeled training images. Instead, we only have side
information (or description) about seen and unseen classes, often in the form of
semantic or descriptive attributes. Lack of training images from a set of classes
restricts the use of standard classification techniques and losses, including the
popular cross-entropy loss. Visual information from the training images and textual
data as the semantic information offer a challenging multi-modal problem. State-of-
the-art approaches aim to link visual and semantic spaces by learning a cross-modal
transfer/embedding and then performing classification in the embedding space. In
this paper, we propose a novel architecture of casting ZSL as a standard neural-
network with cross-entropy loss to embed visual space to semantic space. During
training in order to introduce unseen visual information to the network, we utilize
soft-labeling based on semantic similarities between seen and unseen classes. To
the best of our knowledge, such similarity based soft-labeling is not explored for
cross-modal transfer and ZSL. We evaluate the proposed model on four benchmark
datasets for zero-shot learning, AwA, aPY, SUN and CUB datasets, and show that
our model achieves significant improvement over the state-of-the-art methods in
Generalized-ZSL setting on all of these datasets consistently.

1 Introduction

Supervised classifiers, specifically Deep Neural Networks, need a large number of labeled samples to
perform well. Deep learning frameworks are known to have limitations in fine-grained classification
regime and detecting object categories with no labeled data [1, 2, 3, 4]. On the contrary, humans can
recognize new classes using their previous knowledge. This power is due to the ability of humans to
transfer their prior knowledge to recognize new objects [5, 6]. Zero-shot learning aims to achieve this
human-like capability for learning algorithms, which naturally reduces the burden of labeling. In
zero-shot learning problem, there are no training samples available for a set of classes, referred to as
unseen classes. Instead, semantic information (in the form of visual attributes or textual features) is
available for unseen classes [7, 8]. Besides, we have standard supervised training data for a different
set of classes, referred to as seen classes along with the semantic information of seen classes. The
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key to solving zero-shot learning problem is to leverage trained classifier on seen classes to predict
unseen classes by transferring knowledge analogous to humans.

In order to create a bridge between visual space and semantic attribute space, some methods utilize
embedding techniques [9, 10, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and the others use semantic
similarity between seen and unseen classes [22, 23, 24]. Semantic similarity based models represent
each unseen class as a mixture of seen classes. While the embedding based models follow three
various directions; mapping visual space to semantic space [9, 10, 2, 11, 12, 2], mapping semantic
space to the visual space [13, 14, 25, 26], and finding a latent space then mapping both visual and
semantic space into the joint embedding space [15, 16, 17, 18, 19, 20, 21].

Another recent methodology which follows a different perspective is deploying Generative Adver-
sarial Network (GAN) to generate synthetic samples for unseen classes by utilizing their attribute
information [27, 28, 29]. Although generative models boost the results significantly, it is difficult to
train these models. Furthermore, the training requires generation of large number of samples followed
by training on a much larger augmented data which hurts their scalability.

Our Contribution: We propose a simple fully connected neural network architecture with unified
(both seen and unseen classes together) cross-entropy loss along with soft-labeling. Soft-labeling
is the key novelty of our approach which enables the training data from the seen classes to also
train the unseen class. We directly use attribute similarity information between the correct seen
class and the unseen classes to create a soft unseen label for each training data. As a result of soft
labeling, training instances for seen classes also serve as soft training instance for the unseen class
without increasing the training corpus. This soft labeling leads to implicit supervision for the unseen
classes that eliminates the need for any unsupervised regularization such as entropy loss in [30].
Soft-labeling along with crossentropy loss enables a simple MLP network to tackle GZSL problem.
Our proposed model, which we call Soft-labeled ZSL (SZSL), is simple (unlike GANs) and efficient
(unlike visual-semantic pairwise embedding models) which outperforms the current state-of-the-art
methods in GZSL setting on four benchmark datasets with a significant margin.

2 Proposed Methodology

Problem Definition: Let D = {(xi, yi)}
n
i=1 be training dataset includes n samples where xi is the

visual feature vector of the i-th image and yi is the class label. All samples in D belong to seen
classes S and during training there is no sample available from unseen classes U . The total number of
classes is C = |S|+ |U|. Semantic information or attributes ak ∈ Ra, are given for all C classes and
the collection of all attributes are represented by attribute matrix A ∈ Ra×C . In the inference phase,
our objective is to predict the correct classes (either seen or unseen) of the test dataset D′. The classic
ZSL setting assumes that all test samples in D′ belong to unseen classes U and tries to classify test
samples only to unseen classes U . While in a more realistic setting i.e. GZSL, there is no such an
assumption and we aim at classifying samples in D′ to either seen or unseen classes S ∪ U .

Network Architecture: The proposed architecture is shown in Figure 1. For the visual features
as the input, for all five benchmark datasets, we use the extracted visual features by a pre-trained
ResNet-101 on ImageNet provided by [3]. We do not fine-tune CNN that generates the visual features
unlike model in [30]. In this sense, our proposed model is also fast and straightforward to train.

Soft Labeling: In GZSL problem, we do not have any training instance from unseen classes, so the
output nodes corresponding to unseen classes are always inactive during learning. The true labels
(hard labels) used for training only represent seen classes so the cross entropy cannot penalize unseen
classes. Moreover, the available similarity information between the seen and unseen attributed is
never utilized.

We propose soft labeling based on the similarity between semantic attributes. With soft labeling,
during training we enrich each label with partial assignments to unseen classes and as [31] shows,
soft labels act as a regularizer which allows each training case to enforce much more constraint on
weights. To assign a distribution to all unseen classes, a natural choice is to transform seen-to-unseen
similarities to probabilities (soft labels) shown in Equation (1). In order to control the flatness of
the unseen distribution, we utilize temperature parameter τ . The Impact of temperature τ on unseen
distribution is depicted in Figure 2.a for a particular seen class. Soft labeling implicitly introduces
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Figure 1: The overall workflow of the SZSL classifier and architecture of the proposed MLP. Layers #1 and #2
provide the nonlinear embedding gW(.) to map visual features to attribute space and their weights W1, W2 are
learned by SGD. The output layer with non-trainable weights A, basically calculates dot-products of semantic
representation of the input and all class attributes simultaneously. Soft-labels are also shown for a sample image
from squirrel class.

unseen visual features into the network without generating fake unseen samples as in generative
methods [27, 28, 29]. Hence our proposed approach is able to reproduce same effect as in generative
models without the need to create fake samples and train generative models that are known to be
difficult to train. Below is the formal description of temperature Softmax:

yui,k = q
exp (si,k/τ)∑
j∈U exp (si,j/τ)

where si,j , 〈ai, aj〉 (1)

where ai is the i-th column of attribute matrix A ∈ Ra×C which includes both seen and unseen class
attributes: A = [a1 | a2 | · · · | aC ]. And si,j is the true similarity score between two classes i, j
based on their attributes. τ and q are temperature parameter and total probability assigned to unseen
distribution, respectively. Also yui,k is the soft label (probability) of unseen class k for seen class i. It
should be noted that q is the sum of all unseen soft labels i.e.

∑
k∈U y

u
i,k = q.

Training Strategy: The proposed classifier produces a C-dimensional vector of class probabilities
p for each sample xi as p(xi) = Softmax

(
AT gw (xi)

)
where AT gw (xi) is a C-dimensional vector

of all similarity scores of an input sample. Therefore, the predicted similarity score between semantic
representation of sample xi and attribute ak is ŝi,k , 〈gw(xi) , ak〉.
During training, we aim at learning the nonlinear mapping gw(.) i.e. obtaining network weights W
through:

min
W

n∑
i=1

L(xi) + λ ‖W‖2F + γ ‖W‖ (2)
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where λ and γ are regularization factors which are obtained through hyperparameter tuning, and
L(xi) is the cross-entropy loss over soft labels (Lsoft) for each sample xi (or x for simplicity).

The soft-loss term is expanded to seen and unseen terms as follows:

Lsoft(x) = −
∑
k∈S

ysklog(psk)−
∑
k∈U

yuk log(puk) (3)

Let p̄sk and p̄uk be the normalized versions of psk and puk , respectively. Also the total predicted unseen
probability is

∑
k∈U p

u
k , q̂, consequently for seen classes

∑
k∈S p

s
k , 1− q̂. Plugging normalized

probabilities in Equation (3), we have:

Lsoft(x) = −
∑
k∈S

ysklog(p̄sk)−
∑
k∈U

yuk log(p̄uk)−
∑
k∈S

ysklog(1− q̂)−
∑
k∈U

yuk logq̂ (4)

Utilizing Equation (1), we have yuk = qȳuk , where yuk are soft labels of unseen classes and ȳuk is the
temperature softmax where

∑
k∈U ȳ

u
k = 1. Similarly, the normalized seen labels ȳsk can be obtained

by ysk = (1− q)ȳsk. Replacing normalized labels in Equation (4) leads to:

Lsoft(x) = −(1− q)
∑
k∈S

ȳsklog(p̄sk)− q
∑
k∈U

ȳuk log(p̄uk)− (1− q)log(1− q̂)− qlogq̂ (5)

Hence the first two terms of Lsoft(x) is the weighted sum of cross-entropy of seen classes and cross-
entropy of unseen classes. In particular, first term penalizes and controls the relative (normalized)
probabilities within all seen classes and the second term acts similarly within unseen classes. We also
require to penalize the total probability of all seen classes (1− q̂) and total probability of all unseen
classes (q̂). This is accomplished through the last two terms of Equation (5) which is basically a
binary cross entropy loss. Intuitively soft-loss in Equation (5) works by controlling the balance within
seen/unseen classes (first two terms) as well as the balance between seen and unseen classes (last two
terms). As we have shown in Equation (5), soft-loss enables the classifier to learn unseen classes by
only being exposed to samples from seen classes. Hyperparameter q acts as a trade-off coefficient
between seen and unseen cross-entropy losses. We can see that the regularizer is a weighted cross
entropy on unseen class, which leverages similarity structure between attributes.

At the inference time, our proposed SZSL method works the same as a conventional classifier, we
only need to provide the test image and the network will produce class probabilities for all seen and
unseen classes.

3 Experiment

We conduct comprehensive comparison of our proposed SZSL with the state-of-the-art methods for
GZSL setting on four benchmark datasets (Table 1): AwA [7], SUN attribute [32], CUB-200-2011
[33] and aPY [34]. We present the detailed description of datasets and implementation details in the
Appendix A. The evaluation metric is harmonic average of seen and unseen accuracies. Since we use
the standard split, the published results of other GZSL models are directly comparable. Our model
outperforms the state-of-the-art methods in GZSL setting (Table 2) for all benchmark datasets.

Table 1: Statistics of four ZSL benchmark datasets

Dataset #Attributes #Seen Classes #Unseen Classes #Images

AwA 85 40 10 30475
CUB 312 150 50 11788
aPY 64 20 12 18627
SUN 102 645 72 14340

Illustration of Soft Labeling: Figure 2 shows the effect of τ and the consequent assigned unseen
distribution on accuracies for AwA1 dataset. Small τ enforces q to be concentrated on nearest unseen
class while large τ , spread q over all the unseen classes and basically does not introduce helpful
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Table 2: Results of GZSL methods on ZSL benchmark datasets under Proposed Split (PS) [3]. U, S and H
respectively stand for Unseen, Seen and Harmonic average accuracies.

AwA aPY CUB SUN
Method U S H U S H U S H U S H

Generative Models
f-CLSWGAN [29] 57.9 61.4 59.6 - - - 43.7 57.7 49.7 42.6 36.6 39.4
SP-AEN [35] 23.3 90.9 37.1 13.7 63.4 13.7 34.7 70.6 46.6 24.9 38.6 30.3
cycle-UWGAN [36] 59.6 63.4 59.8 - - - 47.9 59.3 53.0 47.2 33.8 39.4
SE-GZSL [37] 56.3 67.8 61.5 - - - 46.7 53.3 41.5 40.9 30.5 34.9

Non-Generative Models
ALE [38] 16.8 76.1 27.5 4.6 73.7 8.7 23.7 62.8 34.4 21.8 33.1 26.3
SJE [16] 11.3 74.6 19.6 3.7 55.7 6.9 23.5 59.2 33.6 14.7 30.5 19.8
ConSE [39] 0.4 88.6 0.8 0.0 91.2 0.0 1.6 72.2 3.1 6.8 39.9 11.6
Sync [40] 8.9 87.3 16.2 7.4 66.3 13.3 11.5 70.9 19.8 7.9 43.3 13.4
DeViSE [18] 13.4 68.7 22.4 4.9 76.9 9.2 23.8 53.0 32.8 16.9 27.4 20.9
CMT [2] 0.9 87.6 1.8 1.4 85.2 2.8 7.2 49.8 12.6 8.1 21.8 11.8
ZSKL [4] 18.9 82.7 30.8 10.5 76.2 18.5 21.6 52.8 30.6 20.1 31.4 24.5
DCN [30] 25.5 84.2 39.1 14.2 75.0 23.9 28.4 60.7 38.7 25.5 37.0 30.2

SZSL (Ours) 58.8 72.5 64.9 36.6 57.3 44.5 49.1 48.0 48.5 42.2 32.8 36.9

unseen class information to the classifier. The optimal value for τ is 0.2 for AwA dataset as depicted
in Figure 2.b. The impact of τ on the assigned distribution for unseen classes is shown in Figure 2.a
when seen class is squirrel in AwA dataset. Unseen distribution with τ = 0.2, well represents the
similarities between seen class (squirrel) and similar unseen classes (rat, bat, bobcat) and basically
verifies the result of Figure 2.b where τ = 0.2 is the optimal temperature. While in the extreme
cases, when τ = 0.01, distribution on unseen classes in mostly focused on the nearest unseen class,
rat, and consequently the other unseen classes’ similarities are ignored. Also τ = 10 flattens the
unseen distribution which results in high uncertainty and does not contribute helpful unseen class
information to the learning.
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Figure 2: The impact of temperature parameter τ for AwA dataset. (a) unseen soft labels (before multiplying q)
produced by temperature Softmax for various τ , (b) accuracies versus τ for proposed SZSL classifier.

4 Conclusion

We proposed a discriminative GZSL classifier with visual-to-semantic mapping and cross-entropy
loss. During training, while SZSL is trained on a seen class, it simultaneously learns similar unseen
classes through soft labels based on semantic class attributes. We deploy similarity based soft labeling
on unseen classes that allows us to learn both seen and unseen signatures simultaneously via a simple
architecture. Our proposed soft-labeling strategy along with cross-entropy loss leads to a novel
regularization via generalized similarity-based weighted cross-entropy loss that can successfully
tackle GZSL problem. Soft-labeling offers a trade-off between seen and unseen accuracies and
provides the capability to adjust these accuracies based on the particular application. We achieve
state-of-the-art performance, in GZSL setting, on all four ZSL benchmark datasets while keeping the
model simple, efficient and easy to train.
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A Appendix

A.1 Evaluation Metric

For the purpose of validation, we employ the validation splits provided along with PS [3] to perform cross-
validation for hyper-parameter tuning. The main objective of GZSL is to simultaneously improve seen samples
accuracy and unseen samples accuracy i.e. imposing a trade-off between these two metrics. As the result, the
standard GZSL evaluation metric is harmonic average of seen and unseen accuracy. This metric is chosen to
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encourage the network not be biased toward seen classes. Harmonic average of accuracies is defined in Equation
6 where AS and AU are seen and unseen accuracies, respectively.

AH =
2ASAU

AS +AU
(6)

A.2 Dataset Description

The proposed method is evaluated on four benchmark ZSL datasets. The statistics for the datasets are shown in
table 3. Animal with Attributes (AwA) [7, 8] dataset is a coarse-grained benchmark dataset for ZSL/GSZl. It has
30475 image samples from 50 classes of different animals and each class comes with side information in the form
of attributes (e.g. animal size, color, specific feature, place of habitat). Attribute space dimension is 85 and this
dataset has a standard split of 40 seen and 10 unseen classes introduced in [8]. Caltech-UCSD-Birds-200-2011
(CUB) [33] is a fine-grained ZSL benchmark dataset. It has 11,788 images from 200 different types of birds
and each class comes with 312 attributes. The standard ZSL split for this dataset has 150 seen and 50 unseen
classes [15]. SUN Attribute (SUN) [32] is a fine-grained ZSL benchmark dataset consists of 14340 images of
different scenes and each scene class is annotated with 102 attributes. This dataset has a standard ZSL split
of 645 seen and 72 unseen classes. attribute Pascal and Yahoo (aPY) [34] is a small and coarse-grained ZSL
benchmark dataset which has 14340 images and 32 classes of different objects (e.g. aeroplane, bottle, person,
sofa, ...) and each class is provided with 64 attributes. This dataset has a standard split of 20 seen classes and 12
unseen classes.

Table 3: Statistics of four ZSL benchmark datasets

Dataset #Attributes #Seen Classes #Unseen Classes #Images

AwA 85 40 10 30475
CUB 312 150 50 11788
aPY 64 20 12 18627
SUN 102 645 72 14340

A.3 Implementation Details

We utilized Keras [41] with TensorFlow back-end [42] to implement our model

The input to the model is the visual features of each image sample extracted by a pre-trained ResNet-101 [43] on
ImageNet provided by [3]. The dimension of visual features is 2048.

To evaluate SZSL, we follow the popular experimental framework and the Proposed Split (PS) in [3] for splitting
classes into seen and unseen classes to compare GZSL/ZSL methods. Utilizing PS ensures that none of the unseen
classes have been used in the training of ResNet-101 on ImageNet. To obtain statistically consistent results, the
reported accuracies are averaged over 30 trials (using different initialization) after tuning hyper-parameters with
cross-validation.

We cross-validate τ ∈ [10−2, 10], mini-batch size ∈ {64, 128, 256, 512, 1024}, q ∈ [0, 1], hidden layer size
∈ {128, 256, 512, 1024, 1500} and activation function ∈{tanh, sigmoid, hard-sigmoid, relu} to tune our model.
Also we ran our experiments on a machine with 56 vCPU cores, Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHZ
and 2 NVIDIA-Tesla P100 GPUs each with 16GB memory.

A.4 Intuition

Figure 2.a illustrates the intuition of our methodology with AwA dataset. Consider a seen class squirrel. We
compute unseen classes closest to the class squirrel in terms of attributes. We naturally find that the closest class
is rat and the second closest is bat, while other classes such as horse, dolphin, sheep, etc. are not close. This is
not surprising as squirrel and rat share several attribute. It is naturally desirable to have a classifier that gives rat
higher probability than other classes. If we force this softly, we can ensure that classifier is not blind towards
unseen classes due to lack of any training example.

From a learning perspective, without any regularization, we cannot hope classifier to classify unseen classes
accurately. This problem was identified in [30], where they proposed entropy-based regularization in the form of
Deep Calibration Network (DCN). DCN uses cross-entropy loss for seen classes, and regularize the model with
entropy loss on unseen classes to train the network. Authors in DCN postulate that minimizing the uncertainty
(entropy) of predicted unseen distribution of training samples, enables the network to become aware of unseen
visual features. While minimizing uncertainty is a good choice of regularization, it does not eliminate the
possibility of being confident about the wrong unseen class. Clearly, in our example above, the uncertainty
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can be minimized even when the classifier gives high confidence to an unseen class dolphin on an image of
seen class squirrel. Furthermore, in many cases if several unseen classes are close to the correct class, we may
not actually want low uncertainty. Utilizing similarity based soft-labeling implicitly regularizes the model in a
supervised fashion. The similarity values naturally has information of how much certainty we want for specific
unseen class. We believe that this supervised regularization is the critical difference why our model outperforms
DCN with a significant margin.
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