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Abstract

Since the release of the original Visual Question Answering (VQA) dataset, several
newer datasets for visual reasoning have been introduced, often with the express
intent of requiring systems to perform compositional reasoning. Recently, trans-
former models pretrained on large amounts of images and associated text have
been shown to perform much better than simple baselines on such compositional
reasoning datasets as NLVR2 and GQA. In this paper, we analyze the performance
of one of these models, LXMERT, on these two datasets. We show that despite
the model’s strong quantitative results, it may not be performing compositional
reasoning because it does not need many relational cues to achieve this performance
and more generally uses relatively little linguistic information. Our analysis utilizes
experiments with relational linguistic cues removed, the input reduction technique,
and a syntactic probe.

1 Introduction

Compositionality is an important aspect of modes of communication employed by humans [Fodor
and Lepore, 2002]. Therefore, if machines are to be effective at communicating with humans,
machines must be able to do compositional reasoning. Question-answering involving both visual
and language inputs offers an effective way to learn and evaluate compositional reasoning [Suhr
et al., 2018]. Although early visual question answering datasets (e.g. [Agrawal et al., 2017]) did not
directly assess the ability of systems to perform compositional reasoning, more recent datasets such
as CLEVR [Johnson et al., 2017] and GQA [Hudson and Manning, 2019a] evaluate compositional
reasoning via synthetically generated questions. A separate line of work, comprising primarily of the
NLVR (Natural Language for Visual Reasoning) and NLVR2 datasets [Suhr et al., 2017, 2018], also
evaluated compositional reasoning but used natural language. The images in the NLVR dataset are
synthetically generated, while in NLVR2 each example consists of a sentence and two real photos.

Recently, several transformer models have achieved state-of-the-art (or near state-of-the-art) per-
formance on some of these compositional VQA datasets when fine-tuned after pretraining on large
amounts of image and text data [Tan and Bansal, 2019, Li et al., 2019]. Given the strong quantita-
tive performances of the models, a natural question arises – are these models doing compositional
reasoning?

In this work, we move toward an answer to this question by providing a preliminary analysis of
the results of one transformer model, LXMERT, on the NLVR2 and GQA datasets. We find that
without most relational cues, LXMERT can still achieve nearly the same performance on the NLVR2
dataset, and that seemingly difficult sentences can actually be easy for a model due to the images
paired with them. In general, we find that LXMERT uses minimal linguistic information. Figure 1
shows an example in which, the model predicts the same result on all four examples for this sentence
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Label: True

Original
Instance: “[CLS] the left and right image contains no more than three bottles of lot ##ion. [SEP]”

Reduced
Instance: “[CLS] the left and right image contains no more than three bottles of lot ##ion. [SEP]”

Figure 1: Example instance from NLVR2 (with left and right images from a single image pair) which
the model predicts correctly, along with the reduced input for which the model makes the same
prediction. That is, the model makes the same prediction for all image pairs associated with this
sentence when the sentence is reduced. This suggests that the model ignores important content words,
like “three” in this case.

without the number “two” as with the number “two”. We use the following techniques to reach these
conclusions:1

• We modify the NLVR2 and GQA datasets by masking or dropping selected tokens important
for object relations and re-evaluate LXMERT.

• We apply input reduction [Feng et al., 2018], a method to maximally remove tokens that
retain the model’s prediction, to LXMERT on the NLVR2 dataset.

• We probe the syntactic knowledge in LXMERT and compare it to BERT [Devlin et al., 2018].
This test allows us to assess the amount of linguistic information learned by LXMERT
during its pre-training and contrast it with a model that has been shown previously to capture
linguistic knowledge.

2 Removing Linguistic Cues

One way to ascertain whether a cue is important to a model’s predictions is to remove the cue
systematically across the dataset and evaluate whether the model’s performance changes significantly.
We adopt this approach here to determine whether LXMERT uses relational information to answer
questions in NLVR2 and GQA. Specifically, we mask/drop prepositions and verbs, as these contain
most, if not all, information about relations among objects in the images. We train on the original
dataset and subsequently evaluate on the dataset with masked/dropped prepositions and verbs, and
then we train on the dataset with masked/dropped prepositions and verbs and repeat the evaluation.
We use the dependency parser and part-of-speech tagger of spaCy [Honnibal and Montani, 2017] to
detect the prepositions and verbs, respectively.

We present the results in Tables 1 and 2. For NLVR2, we use accuracy and consistency (same as
in the original paper); accuracy denotes the percentage of question-image pairs that are answered
correctly, while consistency denotes the percentage of questions for which all question-image pairs
are answered correctly. The accuracies for all experiments are clustered close together, though there
is some more variation in the consistencies. For GQA, dropping the prepositions and verbs results in
a large drop in accuracy for the models trained with the full sentences or masked prepositions/verbs,

1Note on Experimental Setup: We perform all of our evaluations on the validation/development sets of
NLVR2 and GQA. LXMERT was originally fine-tuned on NLVR2 and GQA with a maximum sequence length
of 20. However, the maximum sequence lengths for the sentences occurring in NLVR2 and GQA are 59 and 41,
respectively. We set the maximum sequence lengths to 60 and 42 for NLVR2 and GQA, respectively, but do not
observe any significant difference in performance compared to the original results.
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Table 1: NLVR2: Masking and Dropping Prepositions and Verbs. Columns represent different
evaluation modes, and rows represent different training modes.

Training Modification
Original Masked Dropped

Acc. Cons. Acc. Cons. Acc. Cons.

None (Original) 0.745 0.406 0.732 0.387 0.719 0.365
Masked 0.738 0.396 0.732 0.383 0.726 0.378
Dropped 0.734 0.387 0.711 0.351 0.731 0.386

Table 2: GQA: Masking and Dropping Prepositions and Verbs. Columns represent different evaluation
modes, and rows represent different training modes.

Training Modification
Original Masked Dropped
Acc. Acc. Acc.

None (Original) 0.597 0.555 0.506
Masked 0.595 0.584 0.525
Dropped 0.595 0.564 0.577

suggesting that answering GQA questions containing relational information is more likely to require
that relational information than answering NLVR2 questions. Still training the model on sentences
with dropped prepositions/verbs recovers most of the drop in performance for GQA.

3 Input Reduction

Input reduction [Feng et al., 2018] is a model analysis technique that iteratively removes a token from
the input until the model’s prediction changes. In open-ended question answering, input reduction
often yields modifications that make the input nonsensical to humans yet preserve the model’s
prediction. We apply the input reduction method to the NLVR2 dataset. Our technique is novel in
that we consider all examples with the same sentence to be part of a single input reduction instance –
if the output of any of the individual examples changes, input reduction stops. Input reduction has
previously been applied to the VQA dataset [Feng et al., 2018], but given that NLVR2 is designed to
test compositional reasoning, the effectiveness of input reduction on NLVR2 is still interesting.

In our experiment, we ran the input reduction method on all sentences in the development set. Of
the 2018 sentences in the development set, there are 819 sentences such that the model gives correct
predictions for all of the image pairs associated with these sentences. Figure 2 shows the histograms
for token sequence lengths before and after input reduction. Table 3 shows examples of reductions for
sentences for which the model gave correct answers for all image pairs associated with the sentence.
In these examples, omission of various pieces of relational (e.g. “in it” or “in front of”) and even
numeric (“three”) information does not change the model’s predictions on any image pair.

4 Probing Syntax Information

Finally, we present results from training a syntax probe on top of the representations of LXMERT
using the data from NLVR2. We extract the dependency parse of each sentence using the spaCy
dependency parser [Honnibal and Montani, 2017] and use the word-pair probe introduced by [Hewitt
and Manning, 2019]. This probe consists of a linear projection of the transformer’s representations
into a vector space with smaller dimension. The probe is trained so that the distances between pairs of
projected word vectors align with corresponding distances in the parse tree. These representations are
frozen (after only pre-training; i.e. without fine-tuning on NLVR2 data). We also include results for
BERT-base (using the final layer representations) for a comparison with a model that has been shown
to capture linguistic information in its representations [Hewitt and Manning, 2019, Liu et al., 2019].
This comparison indicates the extent to which LXMERT learns linguistic knowledge in pre-training,
which is relevant to its ability to do compositional reasoning.

2To obtain cross-modal outputs, we feed the left image of the example as input as well.
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(a) All Sentences (b) Sentences for which all sentence-image pairs were
answered correctly by the model

Figure 2: Histograms showing token sequence lengths before and after input reduction for all
sentences in NLVR2 development set. Blue corresponds to lengths before input reduction. Orange
corresponds to lengths after input reduction.

Table 3: NLVR2 Selected Input Reduction examples of sentences for which the model was correct on
all associated image-pairs.

Original Reduced

[CLS] the left and right image contains no
more than three bottles of lot ##ion. [SEP] [CLS] and right no more bottles lot

[CLS] an image shows a man sitting in front
of a computer screen. [SEP] [CLS] man sitting screen

[CLS] at least one human is wearing eye
glasses. [SEP] eye

[CLS] exactly three white ducks are standing
in a row on dry ground. [SEP] [CLS] exactly three white ducks row

[CLS] at least 2 vulture ##s are sitting in a
tree in one of the pictures. [SEP] [CLS] least 2 vulture

[CLS] a black dug beetle is pushing a ball of
dung in one image, and is without one in the
other. [SEP]

dug beetle pushing ball dung

[CLS] a silver spoon has cookie dough in it.
[SEP] [CLS] silver spoon cookie

The evaluation metric that we use is the average Spearman correlation between distances between
words in the dependency parse tree and the distances between the corresponding projected vectors
that are produced by the probe.3 The results are shown in Table 4. The fact that BERT performs better
in the probing task can be explained by the difference between the pre-training data used for BERT
and that used for LXMERT. Whereas BERT was pre-trained on the 800M-token BooksCorpus [Zhu
et al., 2015] and English Wikipedia, LXMERT was pre-trained on visual question answering datasets
and image captioning datasets (with 100M tokens). It can be inferred that sentences in LXMERT’s
pre-training data are not as linguistically rich or complex as sentences in BERT’s pre-training data.

3As in work of Hewitt and Manning [2019], the average is across sentences with lengths between 5 and 50.

Table 4: Results of syntax probe on NLVR2 dataset.
Probe Avg. Spearman Correlation

BERT Last Layer 0.842
LXMERT Language-only Transformer Last Layer 0.734
LXMERT Cross-Model Transformer Last Layer2 0.638
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5 Conclusion

Our experiments suggest that LXMERT does not use much relational information to make predictions
and relies on relatively few linguistic cues. To improve compositional reasoning on NLVR2, future
work can consider introducing more inductive bias in the model or more supervision in fine-tuning as
in previous work [Hudson and Manning, 2018, Hu et al., 2017, Hudson and Manning, 2019b]. To
improve LXMERT’s linguistic knowledge, future work should consider pre-training such a model on
a larger, linguistically richer body of text.
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