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Abstract

Self-supervised bidirectional transformer models such as
BERT have led to dramatic improvements in a wide vari-
ety of textual classification tasks. The modern digital world
is increasingly multimodal, however, and textual informa-
tion is often accompanied by other modalities such as im-
ages. We introduce a supervised multimodal bitransformer
model that fuses information from text and image encoders,
and obtain at or near state-of-the-art performance on vari-
ous multimodal classification benchmark tasks, outperform-
ing strong baselines, including on hard test sets specifi-
cally designed to measure multimodal performance. Sur-
prisingly, we find that our straightforward method is com-
petitive on these tasks with self-supervised ViLBERT, a mul-
timodal “BERT for vision-and-language” approach.

1. Introduction
Many of the classification problems that we face in the

modern digital world are multimodal in nature: textual in-
formation on the web rarely occurs alone, and is often ac-
companied by images, sounds, videos, or other modalities.
Recent advances in representation learning for natural lan-
guage processing, such as BERT [12], have led to dramatic
improvements in text-only classification problems. In this
work, we propose and examine a straightforward yet highly
effective method for making bidirectional transformers ca-
pable of going beyond text-only data, allowing them to han-
dle the type of multimodal classification settings commonly
found in real-world internet data.

Various self-supervised multimodal architectures have
recently been proposed, such as ViLBERT [27], Visual-
BERT [26], LXMERT [41] and VL-BERT [39]. Contrary
to those architectures, our model relies on nothing but in-
dividually pre-trained unimodal encoders, which are subse-
quently fused in a supervised fashion. We include a compar-
ison against ViLBERT as a representative of the alternative.

We evaluate on the following three multimodal classifi-
cation tasks, which have been used in the past specifically
for evaluating multimodal classification architectures [21]:

MM-IMDB [2], Food101 [47] and V-SNLI [45]. The reason
for choosing these tasks is that 1) we argue that real-world
multimodal classification on internet data is somewhat dif-
ferent from popular tasks like VQA and image-caption re-
trieval, taking these tasks as representatives of that goal; and
2) we are interested in exploring how bitransformer mod-
els perform beyond the “standard” text-only or vision-and-
language tasks, in tasks like these where the data might be
less clean, the text longer or the modalities less balanced.

A desired characteristic of multimodal models is im-
proved performance on cases where high-quality multi-
modal information is available—i.e., the whole should
strictly outperform the sum of its parts. To measure if this
is indeed the case, we construct novel hard test sets con-
sisting of examples that unimodal systems failed to classify
correctly, specifically designed to measure the multimodal
performance of a system.

Our findings indicate that the proposed multimodal bi-
transformer model outperforms the competitive approach of
a deep network on top of concatenated image and text-only
bitransformer features, even if we give that model strictly
more parameters. We argue that this is due to the multi-
modal bitransformer’s ability to employ self-attention over
both modalities simultaneously, providing earlier and more
fine-grained multimodal fusion. Furthermore, we find that
our straightforward method approaches or matches the more
sophisticated ViLBERT model on these tasks. These re-
sults show that the proposed method constitutes a not-to-
be-ignored baseline for future work in multimodal classifi-
cation, as it is not only competitive but straightforward to
implement using existing self-supervised methods.

2. Multimodal Bitransformers
There is a long history, both in natural language pro-

cessing and computer vision, of transfer learning from pre-
trained representations. Self-supervised word and sentence
embeddings [8, 28, 24] have become ubiquitous in natu-
ral language processing. In computer vision, transferring
from supervised ImageNet features is the de facto standard
in computer vision [29, 37].

While supervised data in NLP has also proven useful for
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Figure 1: Illustration of the multimodal bitransformer architecture.

universal sentence representations [9], the field was recently
revolutionized by the idea of fine-tuning self-supervised
language modeling systems [10]. Language modeling en-
ables systems to learn embeddings in a contextualized fash-
ion, leading to improved performance on a variety of tasks
[34, 18]. Training transformers [43] on large quantities
of data yielded even better results [36]. BERT [12] im-
proved on this further by training transformers bidirection-
ally (which we refer to as bitransformers) and changing
the objective to masking, leading to state-of-the-art perfor-
mance on a wide variety of important tasks.

We introduce a straightforward yet highly effective mul-
timodal bitransformer model that combines the text-only
self-supervised representations from natural language pro-
cessing with the power of state-of-the-art convolutional
neural network architectures from computer vision. See
Figure 1 for an illustration of the architecture. In what fol-
lows, we describe the different components in more detail.

2.1. Image Encoder

In computer vision it is common to transfer the fully
connected penultimate layer of a pre-trained convolutional
neural network [37], where the output is often the result of
a pooling operation over feature maps. Within the multi-
modal bitransformer architecture, however, we can handle
arbitrary lengths and are not committed to a particular num-
ber of inputs. Thus, we generalize the final pooling layer
to yield not one single output vector, but N separate im-
age embeddings, unlike in a regular convolutional neural
network. In this case we use a ResNet-152 [17] with av-
erage pooling over K × M grids in the image, yielding
N = KM output vectors of 2048 dimensions each, for
every image. Input images are resized, center-cropped at
224x224 and normalized.

2.2. Multimodal Transformer Input Layer

We use a bidirectional transformer architecture initial-
ized with pre-trained BERT weights. The architecture takes
contextual embeddings as input, where each contextual em-
bedding is computed as the sum of separate D-dimensional
segment, position and token embeddings. We learn weights
Wn ∈ RP×D to project each of the N image embeddings
to D-dimensional token input embeddings:

In =Wnf(img, n), (1)

where f(·, n) is the n-th output of the image encoder’s
final pooling operation.

For tasks that consist of a single text and single image
input, we assign token inputs to one segment ID and image
embeddings to another. We use 0-indexed positional cod-
ing for each segment, i.e., we start counting from 0 for each
segment. The architecture can be straightforwardly gener-
alized to an arbitrary number of modalities, as we show for
the V-SNLI task, which consists of three inputs. Since pre-
trained BERT itself has only two segment embeddings, in
those cases we initialize additional segment embeddings as
si = 1

2 (s0 + s1) + ε where si is a segment embedding
for i ≥ 2 and ε ∼ N (0, 1e−2). Note that a strong advan-
tage of our method is that it works even if not every modal-
ity is present in each example (i.e., if we only have text, or
only an image, the bidirectional transformer still learns an
appropriate representation for classification).

2.3. Classification

We use the first output of the final layer of the bitrans-
former as input to a classification layer clf(x) = Wx + b
where W ∈ RD×C , with D as the transformer dimension-
ality and C as the number of classes. For multilabel tasks,



Dataset Source Type Train Dev Test # Inputs # Classes

MM-IMDB [2] Multilabel 15552 2608 7799 2 23
FOOD101 [47] Multiclass 60101 5000 21695 2 101
V-SNLI [45] Multiclass 545620 9842 9842 3 3

Table 1: Evaluation tasks used for evaluating performance.

which can have more than one right answer, we apply a
sigmoid on the logits and train with a binary cross-entropy
loss for each output class (during inference time, we set the
threshold at .5); for multiclass tasks we apply a softmax on
the logits and train with a regular cross-entropy loss.

2.4. Pre-training

The image encoder was pre-trained on ImageNet [11].
We use the ResNet-152 [17] implementation and weights
available in PyTorch [30] through torchvision. We use the
pre-trained 12-layer 768-dimensional base-uncased model
for BERT [12], trained on the English version of Wikipedia.

2.5. Fine-tuning and Multimodal Optimization

Our architecture consists of a mixture of pre-trained and
randomly initialized components. In NLP, BERT is com-
monly fine-tuned in its entirety, and not transfered as an en-
coder with fixed parameters, as used to be the case in e.g.
SkipThought [24] and InferSent [9]. In computer vision,
the convolutional network is often kept fixed [37], although
it has been found that unfreezing the convolutional network
during later stages of training leads to significant improve-
ments, e.g. in image-caption retrieval [14].

Training multimodal models is not at all trivial, espe-
cially when it comes to the optimization strategy [46]. In the
multimodal bitransformer model we propose here, ResNet
outputs are mapped to BERT’s token space using a set of
randomly initialized mappings Wn. An additional contri-
bution of this work is to explore a solution for optimization
across multiple modalities, namely: we freeze and unfreeze
the image and text encoding components at different stages,
which we treat as a hyperparameter. If we first learn to
map image embeddings to an appropriate subspace of the
text encoder’s input space, we may expect the network to
make more use of visual information than otherwise. In
other words, since the text modality is likely to dominate,
we want to give the visual modality a chance. We experi-
ment with different settings.

2.6. Availability

The code used to train the models in this paper is avail-
able at https://github.com/facebookresearch/

mmbt. It is built using PyTorch [30] and on top of
HuggingFace Transformers [49].

3. Approach
In this section, we describe how we evaluate perfor-

mance, discuss the baselines and provide other experimen-
tal details.

3.1. Evaluation

We evaluate on a diverse set of multimodal classification
tasks. We compare against two tasks also used in [21]: MM-
IMDB [2] and FOOD101 [47]. To illustrate that the archi-
tecture generalizes beyond two input types, we additionally
evaluate on V-SNLI [45], which consists of (premise, hy-
pothesis, image) triplets. Visual grounding has shown to im-
prove NLI performance [23]. In what follows, we describe
the tasks in more detail. See Table 1 for dataset statistics
and Table 2 for examples.

• MM-IMDB The MM-IMDB dataset [2] consists of
movie plot outlines and movie posters. The objective
is to classify each movie by genre. This is a multilabel
prediction problem, i.e., one movie can have multiple
genres. The dataset was specifically introduced by [2]
to address the relative scarcity of high-quality multi-
modal classification datasets.

• FOOD101 The UPMC FOOD101 dataset [47] con-
tains textual recipe descriptions for 101 food labels.
The recipes were scraped from web pages and subse-
quently cleaned to extract text data. Each page was
matched with a single image, where the images were
obtained by querying Google Image Search for the
given category (which might be noisy). The objective
is to find the corresponding food label for each recipe-
image combination.

• V-SNLI The V-SNLI dataset is based on the SNLI
dataset [6]. The objective is to classify a premise and
hypothesis, with associated image, into one of three
categories: entailment, neutral or contradition. The
SNLI dataset was created by having Turkers provide
hypotheses for premises that were derived from cap-
tions in the Flickr30k dataset [50]. [45] put the original
images and the premise-hypothesis pairs back together
in order to create what they refer to as a grounded
entailment task, called V-SNLI. V-SNLI also comes
with a hard subset of the test set, originally created for
SNLI, where a hypothesis-only classifier fails [16].

https://github.com/facebookresearch/mmbt
https://github.com/facebookresearch/mmbt


Dataset Label Image Text

MM-IMDB Comedy Brian is born in a stable on Christmas, right next to You Know Who. The
wise men appear and begin to distribute gifts. The star moves further, so
they take it all back and move on. This is how Brian’s life goes. [...] He
joins the Peoples’ Front of Judea, one of several dozen separatist groups
who actually do nothing, but really hate the Romans. While not about Jesus,
it is about those who hadn’t time, or interest to listen to his message. Many
Political and Social comments.

FOOD101 Cup cakes [...] simple and oh so delicious these basic cupcakes make a lovely birthday
treat makes 24 ingredients 200g unsalted butter softened 1 teaspoon vanilla
extract 1 cup caster sugar 3 eggs 2 1 2 cups self raising flour [...] bake for
15 to 17 minutes alternatively for 1 tablespoon capacity mini muffin pans
use 1 tablespoon mixture bake for 10 to 12 minutes 4 stand cakes in pans
for 2 minutes transfer to a wire rack to cool 5 decorate to suit your party
theme [...]

V-SNLI Entailment
Premise: Children smiling and waving at camera.
Hypothesis: There are children present.

Table 2: Example data for each of the datasets.

3.2. Baselines

It is important to establish strong baselines for our meth-
ods. For example, [21] found that in many cases, text-
only systems like FastText [19] perform surprisingly well.
Here, we compare against strong unimodal baselines, as
well as the highly competitive baseline of concatenating
multimodal features as direct features for the classifier. In
all cases we use a single layer classifier, fine-tuning the en-
tire model end-to-end. We describe each of the baselines in
more detail below.

• Bag of words (Bow) We sum 300-dimensional GloVe
embeddings [31] (trained on Common Crawl) for all
words in the text, ignoring the visual features, and feed
it to the classifier.

• Text-only BERT (Bert) We take the first output of the
final layer of a pre-trained base-uncased BERT model,
and feed it to the classifier.

• Image-only (Img) We take a standard pre-trained
ResNet-152 with average pooling as output, yielding a
2048-dimensional vector for each image, and classify
it in the same way as the other systems.

• Concat Bow + Img (ConcatBow) We concatenate the
outputs of the Bow and the Img baselines. Concatena-
tion is often used as a strong baseline in multimodal
methods. In this case, the input to the classifier is
2048+300-dimensions.

• Late Fusion We take our two best Bert and Img mod-
els, and average their scores to get the final prediction.

• FiLMBert We combine FiLM [32] with BERT, where
the BERT model predicts feature-wise gains and biases
for a ConvNet classifier. We use fixed ResNet-152 fea-
tures as input to the ConvNet, similar to [32].

• Concat BERT + Img (ConcatBert) We concatenate
the outputs of the Bert and the Img baselines. In
this case, the input to the classifier is 2048+768-
dimensions. This is a competitive baseline, since it
combines the best encoder for each modality such that
the classifier has direct access to the encoder outputs.

3.3. Making the Problem Harder

While we evaluate on a diverse set of multimodal clas-
sification tasks, there are actually surprisingly few high-
quality tasks of this nature. In many cases, the textual
modality is overly dominant, sometimes making it diffi-
cult to tease apart differences between different multimodal
methods, or to identify if it is actually worthwhile to in-
corporate multimodal information in the first place. As
we observed earlier, [16] created hard subsets of the SNLI
dataset where a hypothesis-only baseline was unable to cor-
rectly classify the example, rectifying artifacts in the origi-
nal SNLI test set. Here, we follow a similar approach, and
create hard multimodal test sets for our other two tasks.



MM-IMDB FOOD-101 V-SNLI

GMU [2] 51.4 / 63.0 - -
CentralNet [44] 56.1 / 63.9 - -
W2V + VGG Fusion [47] - 85.1 -
Bilinear-gated [21] - / 62.3 90.8 -
V-BiMPM [45] - - 86.99

Bow 38.1±.2 / 45.6±.2 72.4±.3 48.6±.3
Img 32.5±.7 / 44.4±.3 63.2±.6 33.8±.3
Bert 59.9±.3 / 65.4±.1 87.2±.1 90.1±.3

Late Fusion 59.4±.1 / 66.2±.0 91.1±.1 90.1±.0
ConcatBow 43.8±.4 / 53.6±.4 79.0±.9 49.5±.1
FiLMBert 59.7±.4 / 65.1±.2 90.2±.3 89.1±.2
ConcatBert 60.5±.3 / 65.9±.2 90.0±.6 90.2±.4
MMBT 61.6±.2 / 66.8±.1 92.1±.1 90.4±.1

Table 3: Main Results. MM-IMDB is Macro F1 / Micro F1; others are Accuracy.

MM-IMDB Hard FOOD-101 Hard V-SNLI Hard

Bow 50.6±.4 / 54.7±.4 72.7±.5 27.2±.2
Img 39.1±.9 / 48.2±.9 63.4±.6 32.3±.3
Bert 64.7±.5 / 67.0±.3 87.3±.2 79.7±.4

Late fusion 61.7±.9 / 66.4±.5 91.3±.5 79.6±.4
ConcatBert 64.9±.4 / 67.2±.2 90.4±.3 79.9±.9
MMBT 65.3±.4 / 68.6±.4 92.4±.3 80.3±.1

Table 4: Hard Subsets. MM-IMDB is Macro F1 / Micro F1; others are Accuracy.

We construct hard test sets by take the examples where
the Bert and Img classifier predictions are most different
from the ground truth classes in the test set, i.e. examples
that maximize p(a 6= t|I)p(a 6= t|T ), where I and T are
the image and textual information respectively, a is the pre-
dicted answer and t is the correct answer. We take the top
10% of the most-different examples as the hard cases in the
new test sets. The idea is that these are the examples that
require more sophisticated multimodal reasoning, allowing
us to better examine multimodal-specific performance.

3.4. Other Implementation Details

For all models, we sweep by over the learning rate (in
{1e−4, 5e−5}) and early stop on validation accuracy for the
multiclass datasets, and Micro-F1 for the multilabel dataset.
We additionally sweep over the number of epochs to keep
the text and visual encoders fixed, as well as the number of
image embeddings to use as input (see also Section 5 for
a detailed analysis of these hyperparameters). For the Bert
models, we use BertAdam [12] with a warmup rate of 0.1;
for the other models we use regular Adam [22]. Since not all
datasets are balanced, we weigh the class labels by their in-
verse frequency. Code, models and the benchmark suite will

be made available at [GITHUB-URL-ANONYMIZED].

4. Results

The main results can be found in Table 3. In each case,
we show mean performance over 5 runs with random seeds
together with the standard deviation. We compare against
the results of [21] on MM-IMDB and FOOD101. They
found that a bilinear-gated model worked best, meaning that
one of the two input modalities is sigmoided and then gates
over the other input bilinearly, i.e. by taking an outer prod-
uct. Note that in our case, with 2048-dimensional ResNet
outputs and 768-dimensional Bert outputs, bilinear gated
would need a 2048 × 768 × 101-dimensional output layer
(approximately 158M parameters just for the classifier on
top), which is not practical. Still, it is a useful comparison
to see if we can beat it with a deeper model.

On MM-IMDB, we also compare against Gated Multi-
modal Units, as introduced by [2], which are a special recur-
rent unit specifically designed for multimodal fusion (which
similarly has one modality gate over the other). In addition,
we compare to CentralNet [44], a multilayer approach for
multimodal fusion that currently holds the state of the art



Image Text

Mulan is a girl, the only child of her honored family. When the Huns invade China, one man from
every family is called to arms. Mulan’s father, who has an old wound and cannot walk properly,
decides to fight for his country and the honor of his family though it is clear that he will not survive
an enemy encounter. [..] After being spotted and pursued by the enemies, an impasse situation in
the mountains forces Mulan to come up with an idea. But her real gender will no longer be a secret.
She decides to risk everything in order to save China.

Gold labels: Animation, Adventure, Family, Fantasy, Musical, War
Bow: Adventure, Drama — Img: Action, Drama, Romance — MMBT: Animation, Adventure, Family, War

Izo (Kazuya Nakayama) is an assassin in the service of Hanpeida (Ryosuke Miki), a Tosa lord
and Imperial supporter. After killing dozens of the Shogun’s men, Izo is captured and crucified.
Instead of being extinguished, his rage propels him through the space-time continuum to present-
day Tokyo, where he finds himself one with the city’s homeless. Here Izo transforms himself into
a new, improved killing machine, his entire soul still enraged by his treatment in his past life. His
response to the powers-that-be, is the sword.

Gold labels: Action, Drama, Fantasy, Horror, Sci-Fi, Thriller, War
Bow: Action — Img: Drama, Horror — MMBT: Action, Drama, Fantasy, Sci-Fi

Table 5: Example data for the MM-IMDB Hard (ground truth) test set.

Figure 2: Analysis of freezing pre-trained text and image components for N epochs of training.

on this dataset. For FOOD101, we include the original re-
sults from the paper [47], which were obtained by concate-
nating word2vec and VGGNet features and classifying. For
V-SNLI, we compare to the state-of-the-art Visual Bilateral
Multi-Perspective Matching (V-BiMPM) model of [45].

We find that the multimodal bitransformer (MMBT) out-
performs all other models by a significant margin. Late fu-
sion, FiLMBert and ConcatBert perform similarly, with the
latter probably being the strongest baseline. We speculate
that the cause of MMBT’s improvement over ConcatBert
is its ability to let information from different modalities in-
teract at different levels, via self-attention, rather than only
at the final layer. Part of the improvement comes from
Bert’s superior performance (which makes sense, given
text’s dominance), but even then MMBT improves over
Bert by e.g. ∼3% on MM-IMDB Macro-F1 and an impres-

sive ∼6% on Food101. In all cases, multimodal models
outperform their direct unimodal counterparts.

4.1. Hard Testsets

Table 4 reports the results on the hard test sets. Re-
call that these were created by selecting examples where
unimodal (Bert and Img) classifiers differed the most from
the ground truth, meaning that these results provide insight
into true multimodal performance. We also report results on
VSNLIhard [16].

We observe a similar pattern to the main results, with
MMBT outperforming the alternatives. Note that on V-
SNLIhard, [45] report a score of 73.75 for their best-
performing architecture, compared to our 80.4. It is also
interesting to observe that on that hard test set, the image-
only classifier already outperforms the text-only one, which



is definitely not the case for the normal (non-hard) V-SNLI
test set. We include example predictions on MM-IMDB to-
gether with the ground truth in Table 5.

5. Analysis

In this section, we further explore the appropriate multi-
modal optimization strategy for (un)freezing unimodal en-
coders during training. We also compare ConcatBert and
MMBT in terms of parameters, and show that MMBT still
outperforms ConcatBert when that model has a deeper,
multi-layer feedforward neural network classifier.

5.1. Freezing Strategy

We conduct an analysis of whether it helps to initially
freeze the different pre-trained components (we keep the
number of image embeddings fixed). This would help for
instance in learning to map from visual space to the ex-
pected token input space of the transformer. The idea is
to see if it helps to first learn something about the task out-
puts and, importantly, how to map to the bitransformer to-
ken space from the image embeddings. We can then un-
freeze the image encoder, to make the image information
maximally useful, before we unfreeze the bitransformer to
tune the entire system on the task. Figure 2 shows the re-
sults, and indeed corroborates the intuition that it is useful to
first learn to put the components together, then unfreeze the
image encoder, and only after that unfreeze the pre-trained
bitransformer. How many epochs to freeze the text encoder
for appears to be task-dependent, while unfreezing the im-
age encoder early works best.

5.2. Number of Parameters

A possible explanation for the superior performance of
the multimodal bitransformer over ConcatBert could be that
it has slightly more parameters (i.e., an additional 2048×D
versus 2048 × N , where D is the embedding dimension-
ality and N is the number of classes), although the dif-
ference is small: 168M vs 170M parameters. To investi-
gate this, we also compare against a ConcatBert with a 2-
layer and 3-layer multi-layer perceptron (MLP) classifier on
top, of 174M and 175M parameters respectively, rather than
the single-layer logistic regression in MMBT. For MM-
IMDB, ConcatBert-2 and ConcatBert-3 get a Macro-F1
of 60.21±.5 and 59.71±.4 and a Micro-F1 of 65.08±.3 and
64.82± .2 respectively; while for Food101 they get 91.13±
.2 and 90.27 ± .2. This clearly demonstrates (cf. Table 3)
that MMBT is superior to ConcatBert, even when we give
an already highly competitive baseline even more parame-
ters and a deeper classifier. The results suggest that Con-
catBert is more prone to overfitting (we also tried giving it
more image embeddings, and the result was the same).

Figure 3: Performance (MicroF1) on MM-IMDB when we
drop the image for a percentage of the training set, measur-
ing robustness to missing images.

5.3. Robustness to Missing Modalities

We compare ConcatBert and MMBT in a setting where
only a subset of the dataset has images. To our knowledge,
this setting has not been explored thoroughly in the litera-
ture. It is unclear a priori which of the two models would
be more robust to this data regime, and this experiment pro-
vides a useful extra dimension for comparing mid-level fu-
sion with the more sophisticated type of fusion provided by
MMBT. Figure 3 shows that performance drops with fewer
images. It is interesting to observe that MMBT is much
more robust to missing images than ConcatBert.

5.4. Comparison to ViLBERT

We examine the effectiveness of fusing unimodally pre-
trained components by comparing to self-supervised mul-
timodally pretrained models. We take ViLBERT [27] as
the canonical example of that class of models. ViLBERT
was trained multimodally on images and captions, and is
meant to be the “BERT of vision and language”. It uses
Faster RCNN-extracted bounding boxes , kept fixed during
training. Our focus on these somewhat out-of-the-ordinary
tasks now proves fruitful, since it allows us to compare these
models on a level playing field.

Table 6 shows the results. We compare against a vari-
ety of ViLBert models, both the standard pre-trained ver-
sion as well as the versions fine-tuned for particular tasks
like VQA. The latter approach is not proposed in the origi-
nal ViLBert paper, but similar “two-stage pre-training” ap-
proaches have proven effective for fine-tuning BERT on
unimodal tasks [35]. We tune using the hyperparame-
ter sets used in that paper: (batch size, learning rate) ∈
{(64, 2e−5), (256, 4e−5)}. We observe that our straight-
forward MMBT model is surprisingly competitive. On
MM-IMDB, it matches the task-specific ViLBERT mod-
els on Macro-F1. On the Hard subset of that dataset,
which more accurately measures multimodal performance,



MM-IMDB -Hard FOOD-101 -Hard

MMBT 61.6±.2 / 66.8±.1 65.3±.4 / 68.6±.4 92.1±.1 92.4±.5
ViLBert-VQA 60.0±.3 / 66.4±.2 62.7±.6 / 66.2±.4 92.1±.1 92.4±.3
ViLBert-VCR 61.6±.3 / 67.6±.2 63.4±.9 / 66.9±.4 92.1±.1 92.1±.3
ViLBert-Refcoco 61.4±.3 / 67.7±.1 63.4±.5 / 67.1±.4 92.2±.1 92.1±.3
ViLBert-Flickr30k 61.4±.3 / 67.8±.1 63.4±.9 / 67.0±.5 92.2±.1 92.2±.3
ViLBert 63.0±.2 / 68.6±.1 65.4±1. / 68.6±.4 92.9±.1 92.9±.3

Table 6: Comparison of MMBT to ViLBert on MM-IMDB and FOOD-101.

MMBT matches ViLBert’s performance. For FOOD-101,
we observe a similar story, with performance being remark-
ably close, occasionally outperforming task-specific mod-
els, in particular on the Hard subset. Our results suggest that
self-supervised multimodal pre-training has more room for
improvement, and that the supervised fusion of unimodally-
pretrained components is remarkably competitive.

Since the proposed method is unimodally pre-trained, it
may be more preferable depending on the constraints: if a
new breakthrough happens in NLP or CV, it is easy to incor-
porate that model to get even stronger multimodal classifi-
cation. This is trivial to do in our setting, but for ViLBERT
would require retraining from scratch.

6. Related Work

Neural methods are the standard for almost every mod-
ern text and vision classification task. Transformers [43]
have been used to encode sequential data for classification
with great success when pre-trained for language modeling
or language masking and subsequently fine-tuned [36, 12].

The question of how to effectively combine multimodal
information, also known as multimodal fusion, has a long
history [3]. While concatenation can be considered the de-
fault, other fusion methods have been explored e.g. for lex-
ical representation learning [7, 25]. In classification, [21]
examine various fusion methods for pre-trained fixed rep-
resentations, and find that a bilinear combination of data
with gating worked best. Our supervised multimodal bi-
transformer can be seen as incorporating a particular type
of fusion mechanism, with interaction between the modali-
ties via self-attention over many different layers.

Applications of multimodal research in NLP range from
classification to cross-modal retrieval [48, 15, 38] to image
captioning [5] to visual question answering [1] and multi-
modal machine translation [13]. Multimodal information
is also useful in learning human-like meaning representa-
tions [4, 20]. Multimodal bitransformers provide what is
effectively a deep fusion method. Related deep fusion meth-
ods include multimodal transformers [42], CentralNet [44],
MFAS [33] and Tensor Fusion Networks [51].

Concurrently with the work presented in this pa-

per, various self-supervised multimodal architectures have
been published, e.g. ViLBERT [27], VisualBERT [26],
LXMERT [41], VL-BERT [39], VideoBERT [40], and oth-
ers. Our model differs from these self-supervised archi-
tectures in that the individual components are trained uni-
modally. This has pros and cons: our method is straight-
forward and intuitive, easy to implement even for exist-
ing self-supervised encoders, and already obtains impres-
sive improvements. If a new and better text or vision model
comes out, it is trivial to replace components. On the other
hand, it is not able to fully leverage multimodal information
during self-supervised pre-training. That said, it does po-
tentially have access to orders of magnitude more unimodal
data. In other words, if anything, these supervised multi-
modal bitransformers should provide a strong baseline for
gauging if self-supervised multimodal bitransformers actu-
ally outperform their unimodal peers.

7. Conclusion

In this work, we introduced a supervised multimodal
bitransformer model. We compared against several base-
lines on a variety of tasks, including on hard test sets cre-
ated specifically for examining multimodal performance
(i.e., where unimodal performance fails). We find that the
proposed architecture significantly outperforms the existing
state of the art, as well as strong baselines. We then con-
ducted an analysis of multimodal optimization, exploring a
freezing/unfreezing strategy, and looked at the number of
parameters, showing that the strong baseline with more pa-
rameters and a deeper classifier was still outperformed.

Our architecture consists of components that were pre-
trained individually as unimodal tasks, which already
showed great improvements over alternatives. It is as of yet
unclear if multimodal self-supervised models are going to
be generally useful. We compared to ViLBERT and showed
that the proposed model performs competitively. The meth-
ods outlined here should serve as a useful and powerful
baseline to gauge the performance of self-supervised mul-
timodal models. Supervised multimodal bitransformers are
straightforward and intuitive, and importantly, are easy to
implement even for existing self-supervised encoders.
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