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Abstract

Reasoning is an important ability that we learn from a very early age. To develop
models with better reasoning abilities, recently, the new visual commonsense
reasoning (VCR) task has been introduced. Not only do models have to answer
questions, but also do they have to provide a reason for the given answer. Baselines
achieve compelling results via a meticulously designed model composed of LSTM
modules and attention nets. Here we show that a much simpler model can perform
better with half the number of trainable parameters. By associating visual features
with attribute information and better text to image grounding, we obtain further
improvements for our simpler & effective baseline, TAB-VCR. Our approach
results in a 5.3%, 4.4% and 6.5% absolute improvement over previous state-of-
the-art [37] on question answering, answer justification and holistic VCR. The
extended version [26] of this workshop paper and the code is available at https:
//deanplayerljx.github.io/tabvcr.

1 Introduction
Recently, respectable results have been achieved for vision & language tasks. For instance, for visual
question answering [4, 10] and visual dialog [8], compelling results have been reported. Many models
achieve results well beyond random guessing on challenging datasets [9, 23, 38, 15]. However, it
is also known that algorithm results aren’t stable at all and trained models often leverage biases
to answer questions. Thus, it is important to shed light into the decision process of models, and
reasoning is one aspect of it.

Many efforts have been made to address the multi-modal reasoning problem by either incorporating
text-image grounding [34, 35] or increasing the interpretability of models [3, 6, 12, 21, 30, 14, 17,
33, 11, 13, 16, 20]. Recently, a new “visual commonsense reasoning” [37] challenge was posed. In
addition to visual question answering, the algorithm has to justify the answer. In this new dataset
the questions, answers and rationale are expressed using natural language containing references to
objects. The baseline, which achieves compelling results, leverages those cues by combining a LSTM
module based deep net with attention over objects to obtain grounding and context.

However, the baseline is also very intricate. We revisit this baseline and show that a much simpler
model with less than half the trainable parameters achieves much better results. As shown in Fig. 2,
we incorporate visual attribute information in VCR detections and augment object-word grounding
provided in the VCR dataset. We refer to our developed tagging and attribute baseline as TAB-VCR.

2 Attribute-based Visual Commonsense Reasoning (VCR)
Given an input image, the VCR task is divided into two subtasks: (1) question answering (Q→A):
given a question (Q), select the correct answer (A) from four candidate answers; (2) answer jus-
tification (QA→R): given a question (Q) and correct answer (A), select the correct rationale (R)
from four candidate rationales. Importantly, both subtasks can be unified: choosing a response from
four options given a query. For Q→A, the query is a question and the options are candidate answers.
For QA→R, the query is a question appended by its correct answer and the options are candidate
rationales. Note, the Q→AR combines both, i.e., a model needs to succeed at Q→A and QA→R.
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Figure 1: (a) Overview of the proposed TAB-
VCR model: Inputs are the image (with object bound-
ing boxes), a query and a candidate response. Sentences
(query & response) are represented using BERT embed-
dings and encoded jointly with the image using a deep
net module f(·; θ). The representations of query and re-
sponse are concatenated and scored via a multi-layer per-
ceptron (MLP); (b) Details of joint image & language
encoder f(·; θ): BERT embeddings of each word are con-
catenated with their corresponding local image representa-
tion.This information is pass through an LSTM and pooled
to give the output f((I,w); θ). The network components
outlined in black , i.e., MLP, downsample net and LSTM

are the only components with trainable parameters.

The proposed method focuses on choosing a response given a query, for which we introduce notation
next.

We are given an image, a query and four candidate responses. The words in the query and responses
are grounded to objects in the image. The query and response are collections of words, while the
image data is a collection of object detections. One of the detections also corresponds to the entire
image, symbolizing a global representation. The image data is denoted by the set o = (oi)

no
i=1,

where each oi, i ∈ {1, . . . , no}, consists of a bounding box bi and a class label li ∈ L1. The query
is composed of a sequence q = (qi)

nq

i=1, where each qi, i ∈ {1, . . . , nq}, is either a word in the
vocabulary V or a tag referring to a bounding box in o. A data point consists of four responses and
we denote a response by the sequence r = (ri)

nr
i=1, where ri, i ∈ {1, . . . , nr}, (like the query) can

either refer to a word in the vocabulary V or a tag.

We develop a conceptually simple joint encoder for language and image information, f( · ; θ), where
θ is the catch-all for all the trainable parameters. Our proposed approach is outlined in Fig. 1(a), and
the joint language and image encoder is illustrated in Fig. 1(b). Note that for non-tag words, i.e.,
words without an associated object detection, the object detection for the entire image is utilized.

Attributes capturing visual features: We hypothesize that visual question answering and reasoning
benefits from information about object characteristics and attributes. This intuition is illustrated
in Fig. 2 where attributes add valuable information to help reason about the scene, such as ‘gray tie’
and ‘standing man.’

To validate this hypothesis we deploy a pretrained attribute classifier which augments every detected
bounding box bi with a set of attributes such as colors, texture, size and emotions. We show the
attributes predicted by our model’s image CNN in Fig. 2. For this, we take advantage of work
by Anderson et al. [2] as it incorporates attribute features to improve performance on language and
vision tasks.

New tags for better text to image grounding: Associating a word in the text with an object detection
in the image, i.e., oi = (bi, li) is what we commonly refer to as text-image grounding. Any word
serving as a pointer to a detection is referred to as a tag by Zellers et al. [37]. Importantly, we found
many nouns in the text (query or responses) aren’t grounded with their appearance in the image. To
overcome this shortcoming, we develop Algorithm 1 to find new text-image groundings or new tags.
A qualitative example is illustrated in Fig. 2. Nouns such as ‘cart’ and ‘coat’ wasn’t tagged by VCR,
while our TAB-VCR model can tag them.

Specifically, for text-image grounding we first find detections ô (in addition to VCR provided o) using
the image CNN. The set of unique class labels in ô is assigned to L̂. Both q and r are modified such
that all tags (pointers to detections in the image) are remapped to natural language (class label of the
detection). This is done via the remap function. We follow Zellers et al. [37] and associate a gender
neutral name for the ‘person’ class. For instance, “How did [0,1] get here?” in Fig. 2 is remapped to
“How did Adrian and Casey get here?”. Next, the POS tagging function (pos_tag) parses a sentence
w and assigns POS tags to each word w. For finding new tags, we are only interested in words
with the POS tag being either singular noun (NN) or plural noun (NNS). For these noun words, we
check if a word w directly matches a label in L̂. If such a direct match exists, we associate w to the

1The dataset also includes information about segmentation masks, which are neither used here nor by previous
methods. Data available at: visualcommonsense.com
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(Q)	How	did	[0,	1]	get	here
(A)	They	traveled	in	a	cart

They	are	at	a	market	and	[0]	'	s	clothes	look	like	the	locals	in	the	background	.

[1]	is	holding	a	bag	which	people	often	use	to	carry	groceries	.

The	cart	beside	them	is	likely	their	mode	of	transportation	.

Presumably	they	came	here	to	get	something	from	the	store	.

(Q)	How	did	[0,	1]	get	here	?

[0,	1]	got	[1]	released	from	jail	.

[0,	1]	took	the	stairs	to	get	up	there	.

They	traveled	in	a	cart	.

They	both	got	splashed	.

VCR Attributes New	Tag

Response 1:

Response 2:

Response 3:

Response 4:

Question Answering Answer Justification

Query: 

(a) Direct match of word cart (in text) and the same label (in image).

New	TagAttributesVCR

Response 1:

Response 2:

Response 3:

Response 4:

Question Answering Answer Justification

Query:  (Q)	Will	[0]	go	to	work	alone	?
(A)	No	,	[1]	will	go	with	him	.

Both	[0,	1]	are	wearing	lab	coats	and	are	standing	in	close	proximity	
to	one	another	indicating	they	probably	work	together	.

When	there	are	two	people	together	and	one	goes	away	most	of	the	time	the	other	follows	.

Maids	do	not	join	their	employers	when	they	are	done	with	a	job	,	
they	will	have	other	things	they	have	to	get	done	.

[1,	0]	are	in	an	office	,	and	it	might	only	have	a	single	bathroom	.

(Q)	Will	[0]	go	to	work	alone	?

No	,	[0]	wants	to	read	his	paper	.

No	,	[1]	will	go	with	him	.

No	,	he	will	not	.

Yes	,	he	will	be	there	for	a	while	.

(b) Word sense based match of word coats and label ‘jacket’ with the same meaning.
Figure 2: Qualitative results: Two types of new tags found by our method are (a) direct matches and (b) word
sense based matches. Note that the images on the left show the object detections provided by VCR. The images
in the middle show the attributes predicted by our model and thereby captured in visual features. The images on
the right show new tags detected by our proposed method. Below the images are the question answering and
answer justification subtasks.

detections of the matching label. As shown in Fig. 2(a), this direct matching associates the word cart
in the text (response 1 of the Q→A subtask and response 4 of the QA→R subtask) to the detection
corresponding to label ‘cart’ in the image, creating a new tag.

If there is no such direct match for w, we find matches based on word sense. This is motivated
in Fig. 2(b) where the word ‘coat’ has no direct match to any image label in L̂. Rather there is a
detection of ‘jacket’ in the image. Notably, the word ‘coat’ has multiple word senses, such as ‘an
outer garment that has sleeves and covers the body from shoulder down’ and ‘growth of hair or wool
or fur covering the body of an animal.’ Also, ‘jacket’ has multiple word senses, two of which are ‘a
short coat’ and ‘the outer skin of a potato’. As can be seen, the first word senses of ‘coat’ and ‘jacket’
are similar and would help match ‘coat’ to ‘jacket.’ Having said that, the second word senses are
different from common use and from each other. Hence, for words that do not directly match a label in
L̂, choosing the appropriate word sense is necessary. To this end, we adopt a simple approach, where
we use the most frequently used word sense of w and of labels in L̂. This is obtained using the first
synset in Wordnet in NLTK [29, 27]. Then, using the first synset of w and labels in L̂, we find the best
matching label ‘best_label’ corresponding to the highest Wu-Palmer similarity between synsets [36].
Additionally, we lemmatize w before obtaining its first synset. If the Wu-Palmer similarity between
word w and the ‘best_label’ is greater than a threshold k, we associate the word to the detections of
‘best_label.’ Overall this procedure leads to new tags where text and label aren’t the same but have
the same meaning. We found k = 0.95 was apt for our experiments. While inspecting, we found
this algorithm missed to match the word ‘men’ in the text to the detection label ‘man.’ This is due
to the ‘lemmatize’ function provided by NLTK [27]. Consequently, we additionally allow new tags
corresponding to this ‘men-man’ match.
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Q→A QA→R Q→AR Params (Mn)
(val) (val) (val) (total) (trainable)

R2C (Zellers et al. [37]) 63.8 67.2 43.1 35.3 26.8
Improving R2C

R2C + Det-BN 64.49 67.02 43.61 35.3 26.8
R2C + Det-BN + Freeze (R2C++) 65.30 67.55 44.41 35.3 11.7
R2C++ + Resnet101 67.55 68.35 46.42 54.2 11.7
R2C++ + Resnet101 + Attributes 68.53 70.86 48.64 54.0 11.5

Ours
Base 66.39 69.02 46.19 28.4 4.9
Base + Resnet101 67.50 69.75 47.51 47.4 4.9
Base + Resnet101 + Attributes 69.51 71.57 50.08 47.2 4.7
Base + Resnet101 + Attributes + New Tags (TAB-VCR) 69.89 72.15 50.62 47.2 4.7

Table 1: Comparison of our approach to the current state-of-the-art R2C [37] on the validation set. Legend:
Det-BN: Deterministic testing using train time batch normalization statistics. Freeze: Freeze all parameters of
the image CNN. ResNet101: ResNet101 backbone as image CNN (default is ResNet50). Attributes: Attribute
capturing visual features by using [2] (which has a ResNet101 backbone) as image CNN. Base: Our base model,
as detailed in Fig. 1(a) and Fig. 1(b)New Tags: Augmenting object detection set with new tags (as detailed
in Sec. 2), i.e., grounding additionnal nouns in the text to the image.

Algorithm 1 Finding new tags
1: Forward pass through image CNN to obtain object detections ô
2: L̂ ← set(all class labels in ô)
3: for w ∈ w where w ∈ {q, r} do
4: if w is tag then w ← remap(w)

5: new_tags← {}
6: for w ∈ w where w ∈ {q, r} do
7: if (pos_tag(w|w) ∈ {NN, NNS}) and (wsd_synset(w,w) has a noun) then
8: if w ∈ L̂ then . Direct match between word and detections
9: new_detections← detections in ô corresponding to w

10: add (w, new_detections) to new_tags
11: else . Use word sense to match word and detections
12: max_wup← 0
13: word_lemma← lemma(w)
14: word_sense← first_synset(word_lemma)
15: for l̂ ∈ L̂ do
16: if wup_similarity(first_synset(l̂), word_sense) > max_wup then
17: max_wup← wup_similarity(first_synset(l̂), word_sense)
18: best_label← l̂

19: if max_wup > k then
20: new_detections← detections in ô corresponding to best_label
21: add (w, new_detections) to new_tags

This algorithm permits to find new tags in 7.1% answers and 32.26% rationales. A split over correct
and incorrect responses is illustrated in Fig. 3. If there is more than one detection associated with a
new tag, we average the visual features at the step before the LSTM in the joint encoder.

3 Experiments2

Dataset: We train our models on the visual commonsense reasoning dataset [37] which contains over
212k (train set), 26k (val set) and 25k (test set) questions on over 110k unique movie scenes.

Metrics: Models are evaluated with classification accuracy on the Q→A, QA→R subtasks and the
holistic Q→AR task. For train and validation splits, the correct labels are available for development.
To prevent overfitting, the test set labels were not released. Since evaluation on the test set is a manual
effort by Zellers et al. [37], we provide numbers for our best performing model on the test set and
illustrate results for the ablation study on the validation set.

Quantitative Evaluation: Tab. 1 compares performance of variants of our approach to the current
state-of-the-art R2C [37]. While we report validation accuracy on both subtasks (Q→A and QA→R)
and the joint (Q→AR) task in Tab. 1, in the following discussion we refer to percentages with
reference to Q→AR.

We make two modifications to improve R2C. The first, is Det-BN where we calculate and use train
time batch normalization [18] statistics. This makes evaluation independent of batch size and ordering.
Second, we freeze all the weights of the image CNN in R2C, whereas Zellers et al. [37] keep the
last layer trainable. With these two minor but useful changes we obtain an improvement (1.31%) in
performance and a significant reduction in trainable parameters (15Mn). We use the shorthand R2C++
to refer to this improved variant of R2C.

2Details in the supplementary material.
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Model Q→A QA→R Q→AR
Revisited [19] 57.5 63.5 36.8
BottomUp [2] 62.3 63.0 39.6

MLB [22] 61.8 65.4 40.6
MUTAN [5] 61.0 64.4 39.3

R2C [37] 65.1 67.3 44.0
TAB-VCR (ours) 70.4 71.7 50.5

Table 2: Evaluation on test set. Accuracy on
the three VCR tasks. Comparison with top VQA
models + BERT performance (source: [37]).
Our best model outperforms R2C [37] on the
test set by a significant margin.
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Figure 3: New tags: Percentage of response sentences with
a new tag, i.e., a new grounding for noun and object detec-
tion. Correct responses more likely have new detections than
incorrect ones.

VCR subtask Avg. no. of tags in query+response
(a) all (b) correct (c) errors

Q→A 2.673 2.719 2.566
QA→R 4.293 4.401 4.013

Table 3: Average number of tags in the
query+response for the two subtasks for (a) all
datapoints (b) datapoints where TAB-VCR was
correct (c) datapoints where TAB-VCR made
errors. Our model performs better on datapoints
with more tags, i.e., richer association of image
and text.

Ques. type Matching patterns Counts Q→A QA→R

what what 10688 72.30 72.74
why why 9395 65.14 73.02
isn’t is, are, was, were, isn’t 1768 75.17 67.70

where where 1546 73.54 73.09
how how 1350 60.67 69.19
do do, did, does 655 72.82 65.80

who who, whom, whose 556 86.69 69.78
will will, would, wouldn’t 307 74.92 73.29

Table 4: Accuracy analysis by question type (with at least 100
counts) of TAB-VCR model. Why and how questions are most
challenging for the Q→A subtask.

Our base model (described in Sec. 2) which includes (Det-BN) and Freeze improvements, signifi-
cantly improves over R2C++ by 1.78%, while having half the number of trainable parameters.

By using a more expressive ResNet as image CNN model (Base + Resnet101), we obtain another
1.32% improvement. We obtain another big increase of 2.57% by leveraging attributes capturing
visual features (Base + Resnet101 + Attributes). Our best performing variant incorporates
new tags during training and inference (TAB-VCR) with a final 50.62% on the validation set. We
ablate R2C++ with ResNet101 and Attributes modifications, which leads to better performance
too. This suggests our improvements aren’t confined to our particular net.

In Tab. 2 we show results evaluating the performance of TAB-VCR on the private test set, set
aside by Zellers et al. [37]. We obtain a 5.3%, 4.4% and 6.5% absolute improvement over R2C
on the test set. We perform much better than top VQA models which were adapted for VCR
in [37]. Models evaluated on the test set are posted on the leaderboard3. We appear as ‘TAB-VCR’
and outperform prior peer-reviewed work. At the time of submitting this camera-ready (31th Oct
2019), TAB-VCR ranked seventh among single models on the leaderboard. Based on the available
reports [25, 32, 1, 24, 28, 7], most of these seven methods capture the idea of re-training BERT with
extra information from Conceptual Captions [31]. This, in essence, is orthogonal to our new tags and
attributes approach to build simple and effective baselines with significantly fewer parameters.

Qualitative Evaluation: We illustrate qualitative results in Fig. 2 and error analysis in Tab. 3 and
Tab. 4. The error mode analysis will be provided in supplementary material.

4 Conclusion
We develop an effective baseline for visual commonsense reasoning. We leverage additional
object detections to better ground noun-phrases. We show that the proposed approach outperforms
state-of-the-art, despite significantly fewer trainable parameters, providing a basis for future
development.
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5 Supplementary Material for: A Simple Baseline for Visual Commonsense
Reasoning

We structure the supplementary into three subsections.

1. Details about implementation and training routine, including hyperparamters and design
choices.

2. Additional qualitative results including error modes

5.1 Implementation and training details
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Figure 4: Accuracy on validation set. Performance for Q→A (left) and QA→R (right) tasks.

As explained in Fig. 1, our approach is composed of three components. Here, we provide implemen-
tation details for each: (1) BERT: Operates over query and response under consideration. The features
of the penultimate layer are extracted for each word. Zellers et al. [37] release these embeddings with
the VCR dataset and we use them as is. (2) Joint encoder: The output dimension of the CNN is 2048.
The downsample net is a single fully connected layer with input dimension of 2048 (from the image
CNN) and an output dimension of 512. We use a bidirectional LSTM with a hidden state dimension
of 2 · 256 = 512. The outputs of which are average pooled. (3) MLP: Our MLP is much slimmer
than the one from the R2C model. The pooled query and response representations are concatenated
to give a 512 + 512 = 1024 dimensional input. The MLP has a 512 dimensional hidden layer and a
final output (score) of dimension 1. The threshold for Wu Palmer similarity k is set to 0.95.

We used the cross-entropy loss function for end-to-end training, Adam optimizer with learning rate
2e−4, and LR scheduler that reduce the learning rate by half after two consecutive epochs without
improvement. We train our model for 30 epochs. We also employ early stopping, i.e., we stop training
after 4 consecutive epochs without validation set improvement. Fig. 4 shows validation accuracy
for both the subtasks of VCR over the training epochs. We observe the proposed approach to very
quickly exceed the results reported by previous state-of-the-art (marked via a solid horizontal black
line).

5.2 Additional qualitative results

Examples of TAB-VCR performance on the VCR dataset are included in Fig. 6. They supplement
the qualitative evaluation in the main paper ( Fig. 2). Our model correctly predicts for each of these
examples. Note how our model can ground important words. These are highlighted in bold. For
instance, for Fig. 6(a), the correct rationale prediction is based on the expression of the lamp, which
we ground. The lamp wasn’t grounded in the original VCR dataset. Similarly grounding the tag, and
face helps answer and reason for the image in Fig. 6(b) and Fig. 6(c). As illustrated via the couch
in Fig. 6(d), it is interesting that the same noun is present in detections yet not grounded to words in
the VCR dataset.

Error modes. We also qualitatively study TAB-VCR’s shortcomings by analyzing error modes, as
illustrated in Fig. 5. The correct answer is marked with a tick while our prediction is outlined in red.
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(Q)	Is	everyone	at	school	?

No	they	are	not.

Yes	they	are	at	school.

Right	now	there	is	no	classes	happening.

Yes,	a	school	or	library.

(Q)	Why	is	[0]	also	focused	on	[1]	hands	?

So	she	know	how	to	hold	the	pose	that	[2]	is	learning

[1]	is	removing	her	gloves	in	a	show	of	flirtatious	intent

[1]	is	giving	[0]	her	phone	number	

She	is	completely	focused	on	pushing

(Q)	Do	you	think	[4]	will	sit	down	on	[9]	?

Yes	,	if	she	doesn	'	t	dance	,	she	will	sit	soon	.

No	,	she	won	'	t	.

No	she	would	walk	around	it	.

Yes	,	[4]	will	put	her	glove	back	on	,	it	is	on	the	bench	near	[1]	

(a) Similar responses (b) Missing context (c) Future ambiguity
Figure 5: Qualitative analysis of error modes. Correct answers are marked with ticks and our incorrect
prediction is outlined in red. (a) shows options with overlapping meaning. Both the third and the fourth answer
have similar meaning. (b) shows the error due to objects which aren’t present in the image. (c) shows examples
that have scenes offer an ambiguous future.

Examples include options with overlapping meaning (Fig. 5(a)). Both the third and the fourth answers
have similar meaning which could be accounted for the fact that Zellers et al. [37] automatically
curated competing incorrect responses via adversarial matching. Our method misses the ‘correct’
answer. Another error mode (Fig. 5(b)) is due to objects which aren’t present in the image, like the
“gloves in a show of flirtatious intent.” This could be accounted to the fact that crowd workers were
shown context from the video in addition to the image (video caption), which isn’t available in the
dataset. Also, as highlighted in Fig. 5(c), scenes often offer an ambiguous future, and our model gets
some of these cases incorrect. We provide additional examples in Fig. 7. TAB-VCR gets the question
answering subtask (left) incorrect, which we detail next.

Once the model knows the correct answer it can correctly reason about it, as evidenced by being
correct on the answer justification subtask (right). In Fig. 7(a) both the responses ‘Yes, she does like
[1]’ and ‘Yes, she likes him a lot’ are very similar, and our model misses the ‘correct’ response. Since
the VCR dataset is composed by an automated adversarial matching, these options could end up
being very overlapping and cause these errors. In Fig. 7(b) it is difficult to infer that the the audience
are watching a live band play. This could be due to the missing context as video captions aren’t
available to our models, but were available to workers during dataset collection. In Fig. 7(c) multiple
stories could follow the current observation, and TAB-VCR makes errors in examples with ambiguity
regarding the future.
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(Q)	What	are	the	occupations	of	[0,	4]	?
(A)	They	work	at	a	music	store	.

[3]	is	holding	a	guitar	.	there	is	a	microphone	in	between	[0,	4]	.

In	the	old	days	in	small	towns	,	it	was	common	for	musicians	to	set	up	outside	of	general	stores	,	which	attracted	most	of
the	townspeople	.

They	are	both	wearing	name	tags,	and	there	are	guitars	in	the	background	.

[1,	0]	have	the	stereotypical	musician	look	with	long	,	grungy	hair	and	they	are	in	a	store	that	has	many	guitars	on	display	.

(Q)	What	are	the	occupations	of	[0,	4]	?

They	work	at	a	music	store	.

They	are	nazi	soldiers	.

They	are	announcers	or	commentators	.

[0,	4]	are	attorneys	.

(Q)	Is	[1]	at	summer	camp	?
(A)	No	,	[1]	is	not	at	summer	camp	.

The	formal	clothing	of	[1]	and	the	presence	of	a	wine	glass	suggest	this	is	not	a	bathroom	or	swimming	facility	,	making	it
unlikely	her	hair	is	wet	from	showering	or	swimming	.

[1]	is	wearing	a	bikini	and	a	sash	with	her	hometown	written	on	it	.

She	is	in	a	bedroom	with	nice	girlish	decor	and	a	lamp	,	not	a	cabin	or	a	tent	.

[1]	is	wearing	a	bikini	and	there	is	a	pool	directly	behind	her	.

(Q)	Is	[1]	at	summer	camp	?

Yes	,	[1]	is	in	school	.

No	,	it	'	s	the	weekend	for	[0]	.

No	,	[1]	is	not	at	summer	camp	.

Yes	[0]	is	in	italy	.

(Q)	What	is	[0]	doing	with	[1]	?
(A)	[0]	is	carrying	[1]	to	the	couch	.

He	is	lifting	him	and	carrying	him	to	the	exit	.

[0]	has	his	arm	around	[1]	'	s	shoulder	.	[1,	0]	both	look	awkward	.

He	is	holding	her	,	and	he	is	moving	in	that	direction	.

[0]	looks	to	be	trying	to	get	[1]	to	stay	but	he	is	moving	fast	to	gather	his	possessions	to	move	out	.

(Q)	What	is	[0]	doing	with	[1]	?

They	are	helping	[1]	get	off	of	a	bus	.

[1,	0]	decided	to	dance	.

[0]	is	carrying	[1]	to	the	couch	.

[0]	is	letting	[1]	into	the	office	.

(Q)	Is	[0]	in	some	sort	of	danger	?
(A)	Yes	they	seem	to	be	alert	and	scared	.

[0]	is	terrified	but	no	one	else	seems	to	be	in	danger	.

[1]	has	a	gun	up	against	their	head	.

The	expression	on	their	face	is	scared	or	concerned	.

[1]	is	using	an	axe	as	a	weapon	and	[0]	is	pointing	a	gun	at	them	to	make	them	stay	back	.

(Q)	Is	[0]	in	some	sort	of	danger	?

No	,	[0]	is	falling	all	over	the	place	.

Yes	,	[1]	is	in	danger	.

No	,	[1]	is	not	aware	of	any	danger	.

Yes	they	seem	to	be	alert	and	scared	.

(a)

(b)

(c)

(d)

Figure 6: Qualitative results. More examples of the proposed TAB-VCR model, which incorporates attributes
and augments image-text grounding. The image on the left shows the object detections provided by VCR.
The image in the middle shows the attributes predicted by our model and thereby captured in visual features.
The image on the right shows new tags detected by our proposed method. Below the images are the question
answering and answer justification subtasks. The new tags are highlighted in bold.10



(Q)	Why	are	[0,	9,	8,	1]	,	and	[2]	clapping	?
(A)	[0,	9,	8,	1]	,	and	[2]	are	watching	a	live	band	play	.

[1]	is	in	motion	and	is	moving	with	a	quickened	pace	.

[0]	is	boarding	[4]	which	is	parked	outside	of	a	bus	station	.

[2]	can	be	seen	waiting	for	the	carriage	.

[1]	is	surrounded	by	people	at	the	station	,	there	is	a	train	in	the	background	and	people	are	moving	on	and	off	the	train	.

(Q)	Will	[1]	arrive	at	their	destination	soon	?

No	,	[5,	4]	will	not	be	ridden	by	[1]	.

No	,	they	won	'	t	.

[1]	might	write	someone	a	ticket	.

[1]	is	arriving	there	now	.

(c) Future Ambiguity

(Q)	Why	are	[0,	9,	8,	1]	,	and	[2]	clapping	?
(A)	[0,	9,	8,	1]	,	and	[2]	are	watching	a	live	band	play	.

They	are	in	a	bar	where	a	live	band	is	playing	.

It	is	common	to	see	live	music	in	some	restaurants	.	clapping	is	expected	after	each	song	is	played	.

[0,	9,	8,	1]	,	and	[2]	are	cheering	and	yelling	with	wide	smiles	.

Live	music	for	an	audience	is	better	played	on	a	stage	where	the	acoustics	can	be	planned	out	.

(Q)	Why	are	[0,	9,	8,	1]	,	and	[2]	clapping	?

Because	they	are	deciding	which	performer	is	the	best	.

[0,	9,	8,	1]	,	and	[2]	are	acknowledging	what	[6,	3]	just	did	on	stage	.

[0,	9,	8,	1]	,	and	[2]	are	watching	a	live	band	play	.

[0,	9,	8,	1]	,	and	[2]	are	happy	for	the	couple	that	just	got	married	.

(b) Missing Context

(Q)	Does	[0]	like	[1]	?
(A)	Yes	,	she	likes	him	a	lot	.

She	is	leaning	very	close	to	him	and	her	expression	is	happy	.

She	seems	to	be	enjoying	herself	while	telling	him	something	about	shooting	a	hoop	which	he	is	doing	.

She	'	s	watching	him	and	has	a	proud	look	on	her	face	.

She	is	wearing	just	a	t	-	shirt	and	grinning	up	at	[1]	.

(Q)	Does	[0]	like	[1]	?

No	,	she	doesn	'	t	like	him	.

She	does	not	know	him	at	all	.

Yes	,	she	does	like	[1]	.

Yes	,	she	likes	him	a	lot	.

(a) Similar Responses

Figure 7: Qualitative analysis of error modes. Responses with (a) similar meaning, (b) lack of context and
(c) ambiguity in future actions. Correct answers are marked with ticks and our models incorrect prediction is
outlined in red.
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