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Abstract

Visual reasoning in videos requires understanding temporal concepts in addition
to the objects and their relations in a given frame. In analogy with human reason-
ing, we present Selective Attention Memory Network (SAMNet), an end-to-end
differentiable recurrent model equipped with external memory. SAMNet can per-
form multi-step reasoning on a frame-by-frame basis, and dynamically control
information flow to the memory to store context-relevant representations to answer
questions. We tested our model on the COG dataset (a multi-frame visual question
answering test), and outperformed the state of the art baseline for hard tasks and in
terms of generalization over video length and scene complexity.

1 Introduction

Integration of vision and language in deep neural network models allows the system to learn joint
representations of objects, concepts, and relations. Potentially, this approach can lead us towards
Harnad’s symbol grounding problem [4] but we are quite far from achieving the full capabilities of
visually grounded language learning. Starting with Image Question Answering [8, 1] and Image
Captioning [6], a variety of tasks that integrate vision and language have emerged in the past several
years [9]. Those directions include e.g., Video QA [13] and Video Action Recognition [10], that
provide an additional challenge of understanding temporal aspects, and Video Reasoning [12, 14],
that tackles both spatial (comparison of object attributes, counting and other relational question)
and temporal aspects and relations (e.g. object disappearance). To deal with the temporal aspect
most studies typically cut the whole video into clips; e.g., in [12] the model extracts visual features
from each frame and aggregates features first into clips, followed by aggregation over clips to form a
single video representation. Still, when reasoning and producing the answer, the system in fact has
access to all frames. Similarly, in Visual Dialog [2] the system memorizes the whole dialog history.
However, in real-time dialog or video monitoring, it is not always possible to keep the entire history
of conversation nor all frames from the beginning of the recording.

Contributions. In this paper, we introduce a new model for visual reasoning that can dynamically
process video input frame-by-frame, reason over each frame and store the salient concepts in memory
so as to order to answer questions. Our experiments based on the COG dataset [14] indicate that
the model can: (1) form temporal associations, i.e., grounding the time-related words with meaning;
(2) learn complex, multi-step reasoning that involves grounding of words and visual representations
of objects/attributes; (3) selectively control the flow of information to and from the memory to
answer questions; and (4) update the memory only with relevant visual information depending on the
temporal context.
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Figure 1: General architecture of SAMNet

2 Selective Attention Memory (SAM) Network

SAM Network (SAMNet for short) is an end-to-end differentiable recurrent model equipped with
an external memory (Figure 1). The model makes a single pass over the frames in temporal order,
accessing one frame at a time. The memory locations store relevant objects representing contextual
information about words in text and visual objects extracted from video. Each location of the memory
stores a d-dimensional vector. The memory can be accessed through either content-based addressing,
via dot-product attention, or location-based addressing. Using gating mechanisms, correct objects
can be retrieved in order to perform multi-step spatio-temporal reasoning over text and video.

The core of SAMNet is a recurrent cell called a SAM Cell (Figure 2). Unrolling a new series of T
cells for every frame enables T steps of compositional reasoning, similar to [5]. Information flows
between frames through the external memory. During the t-th reasoning step, for t = 1, 2, . . . , T ,
SAM Cell maintains the following information as part of its recurrent state: (a) ct 2 Rd, the control
state used to drive the reasoning over objects in the frame and memory; and (b) sot 2 Rd, the
summary visual object representing the relevant object for step t. Let Mt 2 RN⇥d denote the
external memory with N slots at the end of step t. Let wht 2 RN denote an attention vector over the

Figure 2: Unfolded reasoning steps with operations performed by the SAMCell
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memory locations; in a trained model, wht points to the location of first empty slot in memory for
adding new objects.

Question-driven Controller. This module drives attention over the question to produce k control
states, one per reasoning operation. The control state ct at step t is then fed to a temporal classifier, a
two-layer feedforward network with ELU activation used in the hidden layer of d units. The output
⌧t of the classifier is intended to represent the different temporal contexts (or lack thereof) associated
with the word in focus for that step of reasoning. For the COG dataset we pick 4 classes to capture
the terms labeled “last”, “latest”, “now”, and “none”.

The visual retrieval unit uses the information generated above to extract a relevant object vot from
the frame. A similar operation on memory yields the object mot. The memory operation is based on
an attention mechanism, and resembles content-based addressing on memory. Therefore, we obtain
an attention vector over memory addresses that we interpret to be the read head, denoted by rht.
Note that the returned objects may be invalid, e.g., if the current reasoning step focuses on the phrase
“last red square”, vot is invalid even if the current frame contains a red square.

Reasoning Unit. This module is the backbone of SAMNet that determines what gating operations
need to be performed on the external memory, as well as determining the location of the correct
object for reasoning. To determine whether we have a valid object from the frame (and similarly for
memory), we execute the following reasoning procedure. First, we take the visual attention vector
vat of dimension L, where L denotes the number of feature vectors for the frame, and compute
a simple aggregate1: vst =

P
L

i=1[vat(i)]
2. It can be shown that the more localized the attention

vector is, the higher is the aggregate value. We perform a similar computation on the read head rht

over memory locations. We feed these two values along with the temporal class weights ⌧t to a
3-layer feedforward classifier with hidden ELU units to extract 4 gating values in [0, 1] modulated
for the current reasoning step: (a) gv

t
, which determines whether there is a valid visual object; (b)

g
m
t

, which determines whether there is a valid memory object. (c) hr
t
, which determines whether the

memory should be updated by replacing a previously stored object with a new one; and (d) ha
t
, which

determines whether a new object should be added to memory. We stress that the network has to learn
via training how to correctly implement these behaviors.

Memory Update Unit. Unit first determines the memory location where an object could be added:

wt = h
r
· rht + h

a
·wht�1

Above, wt denotes the pseudo-attention vector that represents the “location” where the memory
update should happen. The sum of components of wt is at most equal to 1; and wt can even equal 0,
e.g., whenever neither condition of adding a new object nor replacing an existing object holds true.
We then update the memory accordingly as:

Mt = Mt�1 � (J�wt ⌦ 1) +wt ⌦ vot,

where vot denotes the object returned by the visual retrieval unit. Here J denotes the all ones matrix,
� denotes the Hadamard product and ⌦ denotes the Kronecker product. Note that the memory is
unchanged in the case where wt = 0, i.e., Mt = Mt�1. We finally update the write head so that it
points to the succeeding address if an object was added to memory or otherwise stay the same. Let
wh0

t�1 denote the circular shift to the right of wht�1 which corresponds to the soft version of the
head update. Then:

wht = h
a
·wh0

t�1 + (1� h
a) ·wht�1

Summary Update Unit. This unit updates the (recurrent) summary object to equal the outcome of
the t-th reasoning step. We first determine whether the relevant object rot should be obtained from
memory or the frame according to:

rot = g
v
t
· vot + g

m
t
·mot

Note that rot is allowed to be a null object (i.e. 0 vector) in case neither of the gates evaluate to true.
Finally, sot is the output of a simple linear layer whose inputs are rot and the previous summary
object sot�1. This serves to retain additional information that was in sot�1, e.g., if it held the partial
result of a complex query with Boolean connectives.

1This is closely related to Tsallis entropy of order 2 and to Rényi entropy.
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3 Experiments

We evaluated SAMNet on the COG dataset [14]. Our experiments were designed to study SAMNet’s
performance as well as its generalization abilities in different settings. For this purpose, we used two
different variants of the COG dataset: an easy one (Canonical) and a Hard version to explore a wide
range of difficulties. The main differences are the number of frames in the input sequence (4 vs. 8)
and the maximum number of distractors (i.e., objects not relevant for the answer) per frame (1 vs.
10).

Figure 3: Comparison of test set accuracies of SAMNet (blue) with original results achieved by the
COG model (gray) on Canonical (top) and Hard (bottom) variants of the COG dataset.

We have implemented and trained our SAMNet model using MI-Prometheus [7], a framework based
on Pytorch [11]. In our experiments, we have focused on 22 classification tasks and compared our
results with the baseline model, as presented in Figure 3. For the Canonical variant (top row), we
have achieved similar accuracies for the majority of tasks (with the total average accuracy of 98.0%
in comparison of 97.6% achieved by the COG model), with significant improvements (around 13
points) for AndCompare tasks. As those tasks focus on compositional questions referring to two
objects, we hypothesize that our model achieved better accuracy due to the ability to selectively pick
and store the relevant objects from the past frames in the memory. Despite there being some tasks
in which our model reached slightly lower accuracies, when comparing performances on the Hard
variant, it improves upon the COG baseline on all tasks, with improvements varying from 0.5 to more
than 30 points.

Figure 4: Total accuracies of SAMNet (blue) and COG models (light/dark gray) when testing
generalization from Canonical to Hard variants of the dataset.
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The goal of the next set of experiments was to test the generalization ability concerning the sequence
length and number of distractors. For that purpose, we have compared the accuracies of both models
when trained on the Canonical variant and tested on Hard (Figure 4). As the original paper does
not include such experiments, we have performed them on our own. The light gray color indicates
the original results, whereas dark gray indicates the accuracies of COG models that we have trained
(fine-tuning/testing) using the original code provided by the authors. For sanity check, in the first
column, we report both the best-achieved score and the score reported in the paper when training
and testing on Canonical variant, without any fine-tuning. In a pure transfer learning setup (second
column), our model shows enormous generalization ability, reaching 91.6% accuracy on the test
set. We have also tested both models in a setup where the model trained on a Canonical variant
underwent additional fine-tuning (for a single epoch) on the Hard variant (third column). In this case,
the SAMNet model also reached much better performance, and, interestingly, achieved better scores
from the model trained and tested exclusively on the Hard variant. In summary, the results clearly
indicate that the mechanisms introduced in SAMNet enable it to learn to operate independently of
the total number of frames or number of distractions, and allow it to generalize to longer videos and
more complex scenes. One other strength of SAMNet is its interpretability. Observing attention
maps (see supplementary material) shows that SAMNet can effectively perform multi-step reasoning
over questions and frames as intended. It also accurately classifies temporal contexts as designed.
However we notice that the model can sometime discover alternative strategies that were not in the
intended design but the answers are still correct.
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