
Learning from Observation-Only Demonstration for
Task-Oriented Language Grounding via

Self-Examination

Tsu-Jui Fu∗
University of California, Santa Barbara

Yuta Tsuboi
Preferred Networks, Inc.

Yuta Kikuchi
Preferred Networks, Inc.

Sosuke Kobayashi
Preferred Networks, Inc.

Abstract

Imitation learning is an effective method for learning a control policy from expert
demonstrations. Combining imitation with natural language instruction promises to
further make imitation learning more flexible and useful in real-world applications.
However, most existing imitation methods rely on the assumption demonstrations
also contain action sequences and that the agent can interact with them to explore al-
ternative trajectories in the space, which greatly limits the practicality of such meth-
ods. We focus on imitation learning with observation-only language-conditional
demonstrations in which ground truth action sequences are not explicitly given.
We propose a method which initially pre-trains modules to capture the inverse
dynamics of the world and learns how to describe the demonstration in natural
language. In a second phase, these modules are used to generate additional training
instances which can be explored self-examination. We evaluate our method on
pick-and-place tasks show that the self-examination improves language grounding.

1 Introduction

Humans are able to learn quickly in new environments by observing others. Different from con-
ventional imitation learning [2, 12], imitation from observation (IFO) [11, 18, 19] and instruction-
conditioned imitation learning [1, 7] train agents similar to the way how humans learn.

IFO provides human-like imitation in which the raw sensor observations of expert behaviors are used
but the executed actions by the expert, such as the trajectory of their joint angles, are not used. This
enables learning from a large number of existing resources such as videos of humans performing
tasks. To address IFO problem, behavioral cloning from observation (BCO) [17] trains an inverse
dynamic model to infer the missing actions and learn a policy using the estimated actions.

From another point of view, humans can communicate their objectives to others by not only demon-
strating but also describing them. Most of the previous imitation learning tasks are specified only
by goal images or video frames [8, 14]. Since the imitation task is visually described, we need a lot
of demonstrations to describe tasks. For example, many images are required to tell whether shape
matters or color matters. To overcome this limitation, instruction-conditioned visual tasks have been
proposed in which the task of a demonstration is also described by natural language instructions.
Since instructions can express the task in a more abstract way, we expect agents are generalized so
that they behave better under unknown situations. Adversarial Goal-Induced Learning from Examples

∗The work was performed during an internship at Preferred Networks, Inc.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Figure 1: Example of 5 different tasks. The white squares depict robot arms and the arrows depict the
trajectories of expert demonstrations.

(AGILE) [1] and Language-Conditioned Reward Learning (LC-RL) [7] have been proposed to learn
a reward function from the instruction-conditioned demonstrations and use it to train policies.

Both of them have desirable properties for real-world applications. However, both AGILE and LC-RL
assume expert actions are given and have to interact with demonstrations, i.e., for the sampling of
negative examples, actions different from expert actions have to be performed under the demonstra-
tion’s state. In other words, the demonstrations must be collected in a virtual environment, i.e. a
simulation, in practice, but it limits their application field. Instead of interacting with demonstrations,
we introduce a two-phase method to train policies in a simulator, as illustrated in Fig. 2. In the 1st
pre-training phase, we train 1) inverse module which estimates actions of demonstration states, 2)
instruction module which selects an appropriate instruction for states not observed in the demonstra-
tions, and 3) reward module which estimates a reward during a simulation. Actions estimated by the
inverse module are used for not only the training of the reward module but also the pre-training of a
policy. In the 2nd-phase, we further improve the policy in the simulation. The instruction module
selects a pseudo instruction for the initial state and a reward module gives reward feedback to actions
performed by the policy, what we call self-examination. In this way, we can try-and-error under
visual-language setting of observation-only imitation learning.

2 Proposed Tasks and Environment

We build an environment for pick-and-place tasks where we have to move the robot arm to a specific
position or pick an object into the correct place which is specified by an instruction. We propose
5 tasks, move, move-udlr, pick, pick-out, and pick-udlr for different situations of pick-and-place
problems, as illustrated in Fig. 1. For more detail, please see the Appendix. A. Let a demonstration D
be a pair of a task instruction t and consecutive state images, (t, {s1, s2, . . .}). Our visual-language
grounding problem is learning an action policy, φ, using both N demonstrations {Di}Ni=1 and a
simulator which simulates the forward dynamics of the environment, sk = sim (sk−1, a). We
also assume random initial states s1 can be generated. Not that we assume no visual gap between
simulations and real environments in this work and leave the filling the gap [3, 9, 16] for future work.

3 Methodology

The overview of our proposed method is illustrated in Fig. 2.

3.1 Modules

To enable self-examination in the simulator, we train the instruction module, reword module, and
policy using expert demonstrations at the pre-training phase (the left part of Fig. 2). Although
expert actions are required for the training of the reward module and the policy, they are not
observable. Therefore, at first, the inverse module is trained to estimate those missing actions in the
demonstrations.

Inverse Module: We first collect numerous state-action pairs (si, si+1, ai) by randomly performing
actions in the simulator. Using these pairs, we train a inverse module which predicts an action for

2



Figure 2: The overview architecture and training flow of both pre-training and self-examination.

realizing a transition between two consecutive states (si, si+1):

a′ = inv(si, si+1),

in the same way as a supervised classification problem. After the training, the unobserved actions in
the demonstrations can be estimated using this inverse module.

Instruction Module: Since language instructions are not available in the simulation, for an initial
state, the instruction module ins selects a suitable instruction from an instruction pool:

t̂ = argmaxt̃∈P ins
(
s, t̃

)
,

where ins(s, t) ∈ [0, 1] is a ranking function and P = {ti}Ni=1 is the instruction pool which consists
of N instructions in the demonstrations D. 2 ins is trained as a binary classifier which discriminates
the whether the correct state-instruction pair or not. For the training of ins, we use the state-instruction
pairs in the demonstrations as the positive pairs and the different instructions chosen randomly as
the negative pairs. At the inference time, if the confidence is low, ins(s, t̂) ≤ 0.8, for the selected
instruction t̂, then we skip the state, and generate a new initial state again.

Reward Module: A reward module rwd gives a reward feedback to the policy in the simulation:

r̂ = rwd(s, t, a) ∈ [0, 1].

rwd is also trained as a binary classifier, and we consider the actions labeled by the inverse module
inv in the demonstrations as the positive cases and randomly different actions as negative cases during
the pre-training.

Action Policy: A policy maps current state s and instruction t to next action:

â = φ(s, t).

At the pre-training phase, behavioral cloning is employed to train a policy using demonstrations and
the labeled action a′ which is estimated by the inverse module.

3.2 Self-Examination

With the instruction module and the reward module, we can further improve the policy φ in the
simulator (the right part of Fig. 2).

Firstly, we randomly generate an initial state s1 and select its instruction t̂ by the instruction module.
Then, using the simulator, the policy repeat the rollout from current state to next state by predicting a
next action. After these rollouts, we apply the reward module to give reward feedback for each step
of the execution trajectory: T = {(s1, t̂, â1, r̂1), (s2, t̂, â2, r̂2), (s3, t̂, â3, r̂3)...}. Finally, we update
the policy φ via Policy Gradient method [15] using T . The reward module is also updated at this
stage by adding the actions the policy performed to the negative examples. In the this process, the
policy φ can try-and-error under different states and different instructions without interacting with
demonstrations themselves. Algorithm 1 describes the detail of the self-examination procedure.

2Note that, since our preliminary experiment shows learning instruction generation is not robust, we employ
the retrieval method instead of instruction generation.

3



Algorithm 1 self-examination phase
φ: action policy
ins: instruction module
rwd: reward module

while self-examination do
s1← a random initial state
t̂← select a suitable instruction by ins

{(s1, t̂, â1), (s2, t̂, â2), . . .} ← adopt φ to rollout (s1, t̂) on the simulator
{(s1, t̂, â1, r̂1), (s2, t̂, â2, r̂2), ...} ← the reward module rwd gives reward

update φ via Policy Gradient
update rwd using {(s1, t̂, â1), (s2, t̂, â2), . . .} as negative cases

end while

Task baseline self-exam. [5K] self-exam. [10K]
move 76.6% 79.4% (+2.8) 78.4% (+1.8)

move-udlr 69.0% 73.4% (+4.4) 72.4% (+3.4)
pick 13.0% 15.0% (+2.0) 15.4% (+2.4)

pick-out 32.8% 34.0% (+1.2) 34.6% (+1.8)
pick-udlr 22.6% 26.0% (+3.4) 24.8% (+2.2)

Table 1: The success rate under normal setting.

baseline self-exam.
62.8% 68.4% (+5.6)
56.8% 60.6% (+3.8)
11.2% 14.6% (+3.4)
27.4% 29.8% (+2.4)
19.8% 21.0% (+1.2)

Table 2: zero-shot setting.

4 Implementation Detail

We employ gated-attention (GA) [7] to encode the pair of a state image s and a instruction t as
follows:

GA(s, t) = CNN(s)� h(GRU(t)),

where CNN extracts the visual feature of the state image, GRU models the feature of the input
instruction, and h is a linear layer with sigmoid activation. h will project and extend the GRU feature
into the same shape as the CNN feature, and � represents the Hadamard product. And the feature
from GA will pass different multilayer perceptrons (MLPs) for each purpose of the action policy φ,
the instruction module ins, and the reward module rwd.

We apply a 4-layer convolutional neural network (CNN) with kernel size 3, feature size 32, stride
2, and padding 1 to extract the visual feature of the state image s. We adopt bidirectional Gated
Recurrent Units (bi-GRU) [6] with hidden size of 64 to model the input instruction. The word
embedding with size 8 is randomly initialized for bi-GRU, then trained with the whole network.
During training, we set the dropout rate 0.25, the learning rate of the pre-training 8e-4, and the learning
rate of self-examination 3e-5. We train our method using Adam optimizer [10] and implement it
under PyTorch [13].

5 Experimental Results

5.1 Experimental Settings

We evaluate our proposed method on move, move-udlr, pick, pick-out, and pick-udlr tasks, which are
described in Section 2. There are 80K demonstrations for each task in the pre-training phase. For the
self-examination phase, we randomly generate up to 10K of initial states of which the instruction
module can find the instructions. Implementation detail is shown in Appendix. 4. For the baseline, we
use the pre-trained policy in the 1st phase, since it is trained as the same way as behavioral cloning
from observation (BCO) [17], which is the state-of-the-art method of imitation from observation.

5.2 Quantitative Results

Table. 1 shows the success rate of both the baseline and the proposed method on 500 evaluation
data for each task. For the baseline BCO, it achieves 76.6% and 69.0% for simpler task, move

4



Task Suitable Rate
move 91.725%

move-udlr 81.145%
pick 90.190%

pick-out 77.940%
pick-udlr 76.810%

Table 3: Suitable rate of the
instruction module

baseline self-examination

"take	out	the	red	diamond	which	belongs	to	the	green
box	to	the	gray	box"

baseline self-examination

"pick	the	blue	diamond	to	the	right	side	of	the	yellow
triangle"

Figure 3: Case study.

and move-udlr, and 13.0%, 32.8%, and 22.6% for more difficult task, pick, pick-out, and pick-udlr,
respectively. For the proposed method, we used 5K or 10K state-instruction pairs for exploration. The
results of self-exam. in Table. 1 show that no matter 5K or 10K, the self-examination phase improves
1.2-4.4 points of success rate which means exploration in the simulation actually benefits to all tasks.

5.3 Detailed Analysis

Zero-shot Generalization: To investigate the generability of visual-language grounding, we evaluate
under zero-shot setting where new combinations of attribute-object pairs are unseen in the training
instructions [4]. For example, there are red circle and yellow rectangle in the training but contains
yellow circle in the testing instructions. To evaluate the success rate for unseen attribute-object pairs,
we also use 80K demonstrations for the pre-training and 5K initial states for the self-examination.

Table. 2 shows the results. Even under the zero-shot setting, we can see that there is only little
performance drop and the exploration in the self-examination can improve 1.2-5.6 points of success
rate over the baseline.

Selected Instructions Suitability: To make sure the instructions selected by ins are suitable for the
initial state generated by the simulator, we evaluate the suitable rate of state-instruction pairs.

As shown in Table. 3, the suitable rate for all tasks is larger than 76% which means the instruction
module actually selects suitable instructions for most of the initial states, making the exploration
possible in the simulation environment.

Case Study: The executions in the comparison between the baseline and the self-examination are
shown in Fig. 3. Since the baseline only sees the perfect actions in the training, it leads to be stuck
and go back and forth repeatedly under new situations (the left case), although the proposed method
can explore under the situation not in the demonstrations. In addition, the self-examination can
recover the situation in which the baseline chose the wrong target object or the wrong target position
for some cases (the right case). Appendix. C demonstrates more case studies.

6 Conclusion and Future Work

We address imitation learning problem from observation-only demonstrations without ground-truth
action under visual-language setting. We propose a two-phase method which enables self-examination
in the simulation. By trained using expert demonstrations, our method can provide instructions and
reword feedback for situations not in expert demonstrations. The experimental results show that the
proposed method improves the success rates of several pick-and-place tasks. Although we validate
our method on the virtual environment, further study is needed for real-world applications, such as
voice-control robot learning via human demonstrations.

Acknowledgement

We appreciate the feedback offered by Jason Naradowsky.

5



References
[1] D. Bahdanau, F. Hill, J. Leike, E. Hughes, A. Hosseini, P. Kohli, and E. Grefenstette. Learning

to understand goal specifications by modelling reward. In ICLR, 2019.
[2] M. Bain and C. Sammut. A framework for behavioural cloning. In Machine Intelligence, 1995.
[3] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,

P. P. Sampedro, K. Konolige, S. Levine, and V. Vanhoucke. Using simulation and domain
adaptation to improve efficiency of deep robotic grasping. In ICRA, 2018.

[4] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Rajagopal, and R. Salakhutdinov.
Gated-attention architectures for task-oriented language grounding. In AAAI, 2018.

[5] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and
Y. Bengio. BabyAI: first steps towards grounded language learning with a human in the loop.
In ICLR, 2019.

[6] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. In NIPS Workshop, 2014.

[7] J. Fu, A. Korattikara, S. Levine, and S. Guadarrama. From language to goals: Inverse reinforce-
ment learning for vision-based instruction following. In ICLR, 2019.

[8] J. Ho and S. Ermon. Generative adversarial imitation learning. In NIPS, 2016.
[9] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine, R. Hadsell,

and K. Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-
to-canonical adaptation networks. In CVPR, 2019.

[10] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. In ICLR, 2015.
[11] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate

behaviors from raw video via context translation. In ICRA, 2018.
[12] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In ICML, 2000.
[13] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop,
2017.

[14] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik,
A. A. Efros, and T. Darrell. Zero-shot visual imitation. In ICLR, 2018.

[15] R. S. Sutton, D. McAllester, N. S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In NIPS, 1999.

[16] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real world. In IROS, 2017.

[17] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. In IJCAI, 2018.
[18] F. Torabi, G. Warnell, and P. Stone1. Recent advances in imitation learning from observation.

In IJCAI, 2019.
[19] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine. One-shot imitation from

observing humans via domain-adaptive meta-learning. In RSS, 2018.

6



A Environment for Proposed Task

Environment: There are 6 actions in our environment:

• U/R/D/L: move the arm up/right/down/left
• P: pick or place the object (pick if the arm is empty, otherwise place the holding object)
• S: stop to indicate the end of the task described by the instruction

As Fig. 1, the environment is a 6x6 observable 2D grid-word which is populated with objects of
different shapes or colors and boxes (those grids with all color filled in) of different colors. The
specification is as following:

• Object Shape: circle, rectangle, diamond, triangle
• Object Color: red, yellow, blue
• Box Color: orange, green, purple, pink, brown, gray, cyan

All the objects and boxes are randomly placed in the grid-world.

During the evaluation, we check the final state when the stop action S is predicted or the maximum
number (40) of action is exceeded. We believe it is important that the agent knows when to finish.
Although there can be a probable case that agent achieves the target during the moving process but
finally moves out from the target, we see those cases as failures.

Task: We propose 5 tasks, move, move-udlr, pick, pick-out, and pick-udlr for different situations of
pick-and-place problems.

• move: move the robot arm to the object
• move-udlr: move the robot arm to the up/down/left/right side of the object
• pick: pick the object into the box
• pick-out: take out the object from the box into another box
• pick-udlr: pick the object to the up/down/left/right side of another object

As BabyAI [5], the related instructions are generated by templates (1 for move, 8 for move-udlr,
12 for pick, 36 for pick-out, 24 for pick-udlr) with different object shapes, object colors, and box
colors. Note that our method does not require to access to these templates and they only used for
the generation of the demonstrations. And the corresponding ground-truth demonstrations are also
automatically produced where all paths are the shortest one. To avoid the ambiguity, we make sure
that there is only one valid object or box mentioned in the instruction. For example of pick-out task
in Fig. 1, there are two blue rectangles in the environment but only one in the brown box, therefore, it
will not cause any ambiguity.

B Self-Examination

C Case Study

7



Figure 4: Case study of the instructions selected by the instruction modulesins.

"move	the	yellow	diamond	from	the	purple	box	in	the
pink	box"

baseline self-examination

"move	to	the	left	side	of	the	red	rectangle"

baseline self-examination

"put	the	red	diamond	in	the	purple	box"

baseline self-examination baseline self-examination

"take	out	the	red	diamond	which	belongs	to	the	green
box	to	the	gray	box"

baseline self-examination

"move	the	yellow	rectangle	at	the	right	side	of	the	blue
circle"

baseline self-examination

"pick	the	blue	diamond	to	the	right	side	of	the	yellow
triangle"

Figure 5: Examples of the different trajectory between the baseline and self-examination.

8


	Introduction
	Proposed Tasks and Environment
	Methodology
	Modules
	Self-Examination

	Implementation Detail
	Experimental Results
	Experimental Settings
	Quantitative Results
	Detailed Analysis

	Conclusion and Future Work
	Environment for Proposed Task
	Self-Examination
	Case Study

