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Abstract

In this study, we analyze the structure of a feature representation space in a deep
neural text-to-image generative model in order to explore the possibility that the
model implicitly acquires the semantic compositionality while generating images
from captions as an explicit task. This is a fundamental approach toward con-
cept acquisition by grounding between linguistic expressions and images. We
analyze the semantic compositionality in a text embedding space in a generative
model. Our experimental result suggests that the semantic compositionality ap-
pears among words indicating positions. This study is the first attempt to explore
the semantic compositionality in text-to-image generation.

1 Introduction

Recently, many novel methods based on deep neural networks have been proposed in natural lan-
guage processing tasks and they have achieved highly impressive results, however, it remains a
difficult problem how those models interpret natural language. In this study, we attempt to disentan-
gle how a deep neural network model interprets natural language through a text-to-image generation
task. A concept behind this is that it is necessary to interpret natural language and to ground lan-
guage representations and image representations in order to generate reasonable images reflecting
the content of the given natural language. In the context of text-to-image generation with deep
neural networks, generative adversarial networks (GANs) have made a great stride and they suc-
cessfully generate high resolution realistic images (Reed et al., 2016; Zhang et al., 2017; Xu et al.,
2018; Zhang et al., 2018; Qiao et al., 2019). On the other hand, most of such researches focus on
generating high resolution images, and there are no research to examine how those models con-
nect the two different modalities, natural language description and images in detail. Another stream
to generate images from natural language description is the method based on Variational Autoen-
coder (Kingma and Welling, 2014). We focus on a Variational Autoencoder model because it per-
forms image generation in a more straightforward way compared with the models based on GANs.
In this study, we will explore the structure of a feature representation space to examine how much
semantic compositionality in words is realized at an internal representation space in a text-to-image
generative model. The contribution of this paper is that this is the first attempt to explore the seman-
tic compositionality in text-to-image generation.

2 AlignDRAW

Mansimov et al. (2016) proposed a model, called alignDRAW, which generates images from natural
language descriptions. alignDRAW imitates the procedure of human drawing, that is, it iteratively
draws patches on a canvas while attending to the relevant words in the description. This model
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is an extension of Deep Recurrent Attentive Writer (DRAW) (Gregor et al., 2015) built based on
Variational Autoencoder. It employs soft attention mechanism (Bahdanau et al., 2015) to strengthen
the relation between linguistic representations and images in text-to-image generation, and then
performs stepwise elaboration of drawings. alignDRAW takes a caption, a sequence of words, as
input and encodes it using a bidirectional LSTM (Hochreiter and Schmidhuber, 1997), and then
it iteratively represents an image as a sequence of patches drawn on a canvas by using attention
mechanism.

3 Analysis of Semantic Compositionality

We explore the semantic compositionality in a feature representation space of the alignDRAW
model. While the original alignDRAW encodes input captions in the form of sequences of one-
hot vectors with a bidirectional LSTM, we extend the model by adding an embedding layer in order
to pass each input word to a bidirectional LSTM after mapping it to a distributed representation. The
outline of our extension of alignDRAW is illustrated in Figure 1.

Figure 1: Extended alignDRAW model.

After training the model on a dataset
which consists of captions and im-
ages, we analyze the semantic com-
positionality among the distributed
representations acquired in the em-
bedding space. First, we compose es-
timated representations in the follow-
ing two methods: a simple element-
wise addition of two vectors, and vec-
tor operation which takes account of
meta meaning included in the word
embedding vectors. Then, we eval-
uate cosine similarities between es-
timated and actual word representa-
tions.

4 Experiments

4.1 Experimental Setup

We created a dataset consisting of captions in Japanese and images based on the
MNIST1 (Lecun et al., 1998) dataset by using the templates shown in Table 1. Using eight types
of templates with placeholders, the captions were artificially created by inserting numeric represen-
tations corresponding to digits randomly sampled from the MNIST dataset into the placeholders.
Images were created by placing the MNIST images to areas corresponding to the captions on 60 ×
60 pixel blank images with a latitude of four pixels. We trained the model on 40,000 samples, and
4,000 samples were used as development and test data, respectively. We followed the settings shown
in Table 2 for training an alignDRAW model.

On analyzing the semantic compositionality, we focused on eight words indicating positions, i.e. “
左" (left), “右"(right), “上"(top), “下"(bottom), “左上"(top left), “左下"(bottom left), “右下"(bottom
right), and “右上"(top right). It is assumed that we interpret “top left" semantically as the addition
of “top" and “left". In order to see whether this semantic compositionality is found among represen-
tations acquired at the embedding layer, we estimated the representations corresponding to complex
concepts in the following two methods. In the first method, we estimated the complex representa-
tions for “top left", “bottom left", “bottom right", and “top right" by element-wise addition of vector
representations corresponding to primitive components; “left", “right", “top", and “bottom". For
instance, the estimated representation corresponding to “top left" was composed as the addition of
the vector representations corresponding to “top" and “left". This is a naive way which reflects our
intuition, however, this does not take account of meta meaning which each representation possesses.
Each representation has meta meaning; for example, “right" is the representation that contains the

1http://yann.lecun.com/exdb/mnist/
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Table 1: Templates for creating captions.

Template in Japanese Translation in English

1 数字 _が画像の左にある . the digit _ is at the left of the image .
2 数字 _が画像の右にある . the digit _ is at the right of the image .
3 数字 _が画像の上にある . the digit _ is at the top of the image .
4 数字 _が画像の下にある . the digit _ is at the bottom of the image .
5 数字 _が画像の左上にある . the digit _ is at the top left of the image .
6 数字 _が画像の左下にある . the digit _ is at the bottom left of the image .
7 数字 _が画像の右上にある . the digit _ is at the top right of the image .
8 数字 _が画像の右下にある . the digit _ is at the bottom right of the image .

Table 2: Architectural configurations of our alignDRAW model.

Vocabulary size 28
Language encoder 32-dimensional distributed representation → 128units,bidirectionalLSTM

Attention mechanism 256 units, Bahdanau Attention
Decoder 300 units, DRAW LSTM

# Iterations for drawing 32 steps
Dimension of latent variables 150

Optimization algorithm RMSProp
Learning rate initial lr: 0.001, halving per 15 epochs after 75th epoch

Initial parameters random values ∼ N (0, 0.1)
# Epochs to train 150

meaning of either direction or position, “three" is the representation that contains the meaning of nu-
merical value, and so on. In the naive addition, the meta meaning is also straightforwardly added in
vector representation operation, although the same meta meaning might redundantly added. Taking
account of this problem, as the second method, we consider meta meaning by applying subtraction
as well as addition. Table 3 shows how to compose each estimated representation.

Table 3: Composition of estimated representations.

Complex concepts Method Composition

top left 1 top + left
2 bottom left - bottom + top, top right - right + left

bottom left 1 bottom + left
2 top left - top + bottom, bottom right - right + left

bottom right 1 bottom + right
2 top right - top + bottom, bottom left - left + right

top right 1 top + right
2 bottom right - bottom + top, top left - left + right

4.2 Results

Figure 2: Examples of generated images for the experiments
on analyzing the semantic compositionality.

As we can see in Figure 2, the
model generated reasonable images
for given captions. Cosine similar-
ities between estimated representa-
tions and corresponding actual rep-
resentations are shown in Table 4.
As for representations estimated by
naive addition (Method 1), cosine
similarities are high for three words
other than “右上" (top right). We as-
sume that the reason why cosine sim-
ilarity for “top right" was small is be-
cause the number of samples corre-
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sponding to “top right" was larger than the expected average number of samples and the numbers
of samples corresponding to “top" and “right", which were its primitive components, were smaller
than the expectation, although we expected the number of samples for each direction was substan-
tially balanced since each template was selected randomly on creating dataset. In the composition,
considering meta meaning, there were many cases where cosine similarities were slightly higher or
almost the same compared with those in the simple addition. In the case where “top right" were used
in the composition, we see that cosine similarities tended to get lower.

Table 5 shows words corresponding to 3-closest representations to the ones estimated by Method 1.
For three words, “top left", “bottom left", and “bottom right", we found that the corresponding actual
representations successfully ranked in 3-closest representations to their estimated ones respectively.
Figure 3 gives a 2-dimensional t-SNE (van der Maaten and Hinton, 2008) visualization of the actual
representations and the ones estimated by Method 1. Actual representations corresponding to words
indicating positions are colored in red, and representations estimated in Method 1 are colored in
blue. Others are displayed in black. For three words other than top right, estimated representations
are relatively close to their corresponding actual ones. Thus, we suppose that the result suggests the
semantic compositionality is found in the embedding space.

Table 4: Cosine similarities between estimated representations and corresponding actual represen-
tations.

Method1 Method2

top left top + left bottom left - bottom + top top right - right + left
0.89 0.94 0.91

bottom left bottom + left top left - top + bottom bottom right - right + left
0.80 0.35 0.92

bottom right bottom + right top right - top + bottom bottom left - left + right
0.92 0.81 0.92

top right top + right bottom right - bottom + top top left - left + right
0.29 0.21 0.44

Table 5: Words corresponding to 3-closest representations to the representations estimated by
Method 1.

rank top left bottom left bottom right top right

1 top left left right right
2 top top left 1 1
3 left bottom left bottom right bottom right

5 Conclusion

Figure 3: Obtained semantic compositionality.

We have analyzed the feature rep-
resentation space in a text-to-image
generative model. We focused
on alignDRAW model, a text-to-
image model based on Variational
Autoencoder, and extended it by
adding an word embedding layer in
order to analyze the semantic com-
positionality for the obtained word
embedding vectors. On analyz-
ing the semantic compositionality,
we reported the results suggesting
that the semantic compositionality
could be found among words repre-
senting positions in the embedding
space of the model. In the future,
we would like to perform further
analysis with more diverse datasets.
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