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Abstract

Visual question answering (VQA) comprises a variety of language capabilities.
The diagnostic benchmark dataset CLEVR has fueled progress by helping to better
assess and distinguish models in basic abilities like counting, comparing and
spatial reasoning in vitro. Following this approach, we focus on spatial language
capabilities and investigate the question: what are the key ingredients to handle
simple visual-spatial relations? We look at various VQA models and evaluate their
learning behavior on diagnostic data which is solely focused on spatial relations.
Via comparative analysis and targeted model modification we identify what really
is required to substantially improve upon the CNN-LSTM baseline.

1 Introduction

Visual question answering is a broad and high-level task formulation which requires a wide range
of visual and language understanding abilities. The VQA Dataset [1] tries to capture the variety
of generic real-world visual questions, but while accuracy scores on this dataset have increased
over time, it remained unclear what techniques consistently improve performance for which type
of questions/images. In reaction to unsatisfying evaluation results, the CLEVR dataset [4] was
introduced with the motivation to explicitly focus on a more well-defined subset of diagnostic VQA
instances in vitro. An important finding was that some of the previous state-of-the-art models did not,
in fact, substantially improve upon simple baselines.

In the meantime, various models have been proposed for the CLEVR dataset, many of which reach
close-to-perfect performance [2, 5, 11, 10, 3, 9, 8, 12]. Marginal differences between models can be
deceptive since, on the one hand, it is unclear what the real strength of each model is and, on the
other hand, exactly which part of the model contributed to what observed improvement. Taking into
account that CLEVR is a decidedly diagnostic dataset, comparable performance levels rather indicate
the limits of differentiation of the dataset, and consequently call for further assessment.

In this paper we focus on simple spatial language understanding. Since CLEVR contains questions
with spatial relations like “left of” or “in front of”, we assume that the recent CLEVR models are
able to correctly process such phrases. The question we thus seek to answer is: what architectural
module(s) enable a model to handle spatial descriptions? In particular, we investigate four VQA
models, all of which follow the architecture pattern of the CNN-LSTM baseline, but introduce
modifications which improve model capabilities substantially: SAN with stacked attention [13],
RelNet with its relation module [11], FiLM with feature-wise linear modulation [10], and the
multimodal core [8].

We analyze performance of these models on visually grounded spatial language data produced by the
ShapeWorld simulator [6], which shares the abstract domain of colored shapes with CLEVR and can
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be configured to only produce spatial statements of a certain type. Figure 1 shows an example image
together with three statements about the image. Note that, technically, the task here is about identifying

Explicit relation:
A rectangle is closer to the
triangle than a red circle.

Implicit (comparative):
The lower cross is green.

Implicit (superlative):
The leftmost circle is gray.

Figure 1: An example image plus three valid cap-
tions containing simple spatial relations. Each one
illustrates a different way of how such a relation
may be realized in language. The statements in our
experiments may also be wrong, and thus basically
act as yes/no questions, which the model has to
answer correctly, that is, infer whether or not a
statement agrees with an image.

image-caption agreement, but the data can be
trivially transformed into ‘pseudo-VQA’ data by
adding a corresponding yes/no answer.

Our results indicate that two alternative tech-
niques enable models to achieve a high accuracy
for VQA instances involving spatial relations:
concatenating image features with relative spa-
tial coordinates is easier to integrate with any
architecture, whereas feature-wise linear mod-
ulation for early fusion of modalities in com-
bination with convolutional layers is the more
effective method. Other features, like stacked at-
tention or the relation module of RelNet, did not
on its own contribute to improved performance.

2 Data

We use the ShapeWorld system [6] to produce
the data for our experiments. Each data point
consists of an image of size 64× 64 and shows
four to ten colored two-dimensional shapes ran-
domly located on a black background, accompanied by a natural language statement and a binary
agreement value, which we interpret as ‘question’ and yes/no answer.

We experiment with three types of statements requiring spatial understanding. In the first, referred
to as SPATIAL-EXPLICIT, the spatial relation acts as the verb phrase of the sentence: “X is to
the left of Y.”. For the other two, referred to as SPATIAL-IMPLICIT, the relation is realised as
adjectival predication, either in its positive/comparative (SPATIAL-COMPARATIVE) or superlative form
(SPATIAL-SUPERLATIVE): “The left/leftmost X is Y.”. The following six/eight spatial relations are
available in the respective forms: “left/-most”, “right/-most”, “above/upper/-most”, “below/lower/-
most”, “closer/-est to the X than”, “farther/-est from the X than”, “behind” and “in front of”. Of
these, the latter two are only generated for SPATIAL-EXPLICIT, since the other two variants are
unlikely to be found in randomly sampled images. Figure 1 shows an image plus an agreeing example
for each caption type. Note that ShapeWorld only produces statements that ‘make sense‘: for instance,
SPATIAL-COMPARATIVE instances only if there are two objects satisfying the noun phrase description,
or SPATIAL-SUPERLATIVE if there are at least two.

3 Models

Besides the unimodal CNN/LSTM and the multimodal CNN-LSTM baseline, we investigate four
recent VQA models: SAN [13], RelNet [11], FiLM [10], and MC [8]. We identify what the
corresponding paper introduces as the core module, and try to keep hyperparameters the same across
all models for the other generic parts, to enable a fair comparison of the actual innovation behind
the model. Generic architecture parts are the image and language feature extractor as well as the
answer classification part. The core module is the part responsible for combining image and language
features to arrive at a final pre-answer embedding: the stacked attention layers for SAN, the relation
module for RelNet, the linear modulation layers for FiLM, and the multimodal core module for MC1.

Image module. The visual input is processed by a stack of three convolution layers, each with
128 kernels of size 3 × 3 and stride 2 followed by batch normalization and ReLU activation, thus
producing image features of size 8× 8× 128.

Language module. The words of the language input are mapped to 128-dimensional embeddings
and subsequently processed by an LSTM, or GRU in case of FiLM, of size 512, or 128 in case of
RelNet (to keep pairwise combinations small), thus producing a language embedding of size 512/128.

1Model implementations can be found on GitHub under https://github.com/AlexKuhnle/film.
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Figure 2: Performance curves over the course of training (x-axis: iterations in 1000, y-axis: accuracy).

Core modules. The implementations mostly follow the description in the original papers. Minor
differences: In case of RelNet, instead of the image module producing 24-dim. features, we apply a
32-dim. linear layer before the relation module. In case of FiLM, we apply a final 128- as opposed to
512-dim. linear layer after the FiLM layers. In case of SAN, we follow the implementation as part of
the CLEVR/FiLM GitHub repository, but use 256- as opposed to 512-dim. stacked attention layers
and also apply an initial 256-dim. linear layer to the language input.

Classification module. The core module output is processed by a 1024-dimensional linear layer
followed by batch normalization and ReLU activation, before producing a distribution over answers.

Optimization. Models are optimized using Adam with learning rate 3 · 10−4 and batch size 64.

4 Experimental setup

We run separate experiments for each of the three caption types, since we noted that performance
levels and learning behaviors vary noticeably between them. For each type, 500k training instances
and 10k validation instances are generated, following the same generator configuration/distribution
as the training data. We run every experiment three times and generally refer to the average accuracy,
but additionally indicate minimum/maximum observed performance amongst the three runs in figures
as shaded area. Models are trained for 200k iterations (100k in the case of the CNN/LSTM baseline),
which corresponds to roughly 25 epochs given the batch size of 64.

5 Results

Figure 2 shows how performance develops over the course of training for each model on the three
datasets. A first observation is that no model reaches an accuracy of more than 80% on the SPATIAL-
EXPLICIT dataset. While accuracy varies across relations – “left/right/above/below” appear generally
easier to learn than the other four relations, particularly “closer/farther. . . than” – the main reason
seems to be that the evaluated models struggle with multiple mentions of different shapes, which
captions in the other datasets do not contain. Performance on statements like “A square is above a
circle.” is only around 66%, whereas statements like “A red shape is above a blue shape.” produce
the correct response with an accuracy of 95% in case of the FiLM model, but others show comparable
differences. We leave further investigation of this finding to future research, and work on basis of the
still substantial gap observed between some models.

The other obvious finding is that, despite their comparable performance on CLEVR, the models
under consideration exhibit markedly different learning behavior and final accuracy levels. On
the SPATIAL-EXPLICIT dataset, FiLM clearly dominates with an eventual accuracy of around 77%
reached after only 50k iterations. RelNet is the only other model which catches up later on and reaches
a final performance of 74%, while the others do not improve by more than 5% upon the CNN-LSTM
baseline. On the two SPATIAL-IMPLICIT datasets, FiLM and RelNet show virtually the same learning
curve and solve the dataset almost perfectly after around 60-80k iterations, with around 97% final
accuracy. The MC model is second-best with an accuracy of ∼78% for SPATIAL-COMPARATIVE
and 85% for SPATIAL-SUPERLATIVE, whereas SAN only shows slightly better performance than the
CNN-LSTM baseline on SPATIAL-SUPERLATIVE.

What is the reason for the superior performance of FiLM and RelNet? We conjectured that it may be
due to the fact that these two are the only models that attach a map of relative spatial coordinates to
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Figure 3: Performance curves, for models with (+) or without (–) coordinate map, or with early FiLM
fusion and convolutions instead of concatenation and fully-connected layers (*).

the image features. This minor detail infuses useful spatial information and thus relieves the core
module of having to learn the concept of relative spatial position from scratch. Since the modification
can easily be applied to the other models (at the beginning of their core module), we run the same
experiments with added coordinate information for MC, SAN and CNN-LSTM, and instead remove
it from FiLM and RelNet. Results are shown in figure 3.

Comparing the MC and RelNet model, MC with or without coordinates performs roughly on par
with the RelNet model under the same condition. Since their architectures mainly differ in whether to
process single positional image embeddings or pairwise concatenations thereof, this result indicates
that the relation module, which is supposed to be an architectural prior assisting the processing for
relational inference, does not contribute to improved performance here. The SAN model reaches a
similar level to the other models only on SPATIAL-SUPERLATIVE, and a slightly worse level of around
91% on SPATIAL-COMPARATIVE, while it does not improve on SPATIAL-EXPLICIT. Interestingly,
even the CNN-LSTM baseline profits from coordinates on SPATIAL-SUPERLATIVE, improving by
almost 10%, despite the fact that positional image embeddings are pooled before being fused with
language features.

However, performance of the FiLM model remains virtually unchanged, implying that it does not
(solely) rely on coordinates to handle the data. Another aspect which is unique about its architecture
is the use of convolutional layers with kernel size 3 × 3 as opposed to the fully-connected layers
which, in case of the other models, are applied independently per positional embedding. This allows
FiLM to capture relative positions locally, and four subsequent such layers are enough to cover the
entire 8× 8 feature space (see figure in appendix for full results).

Our first attempt to transfer this insight to the MC model by simply replacing fully-connected layers
with convolutions did not improve performance. It turns out that the beneficial effect of convolutions
relies on FiLM’s feature-wise linear modulation to fuse language and visual features, instead of the
otherwise typical concatenation (see figure in appendix for full results). These insights can even be
transferred to the CNN-LSTM baseline. Since its late-fusion approach is not able to make full use of
spatial information, we also compare to an early-fusion variant where language and visual features
are combined at the beginning of its core module (see figure in appendix for full results). Results for
MC and CNN-LSTM, included in figure 3, confirm the effectiveness of the approach: performance of
both models is boosted (almost) to the level of the FiLM model.

Note that integrating this feature is not possible for RelNet, since the pairwise combinations destroy
the two-dimensional arrangement of image features which is required to apply convolutions. Similarly,
it is not clear how to integrate the changes into SAN’s stacked attention layer.

6 Conclusion

In this paper we investigate the question: what architectural detail of a VQA model is (or is not)
responsible for the ability to correctly handle simple spatial language? By analyzing and comparing
various VQA models – CNN-LSTM, SAN, RelNet, FiLM and MC – on diagnostic data which
specifically targets spatial reasoning capabilities, we identify two alternative techniques whose
presence or absence has a deciding impact on whether a model is able to achieve high performance
on our data: concatenating image features with relative spatial coordinates (similar to [7]), or early
fusion via feature-wise linear modulation in combination with convolutions. Other features, like the
stacked attention layers of SAN or the relation module of RelNet, did not have a beneficial effect.
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