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Abstract

Learning from different data types is a long standing goal in machine learning
research, as multiple information sources co-occur when describing natural phe-
nomena. Existing generative models that try to approximate a multimodal ELBO
rely on difficult training schemes to handle the intermodality dependencies, as well
as the approximation of the joint representation in case of missing data. In this
work, we propose an ELBO for multimodal data which learns the unimodal and
joint multimodal posterior approximation functions directly via a dynamic prior.
We show that this ELBO is directly derived from a variational inference setting for
multiple data types, resulting in a divergence term which is the Jensen-Shannon
divergence for multiple distributions. We compare the proposed multimodal JS-
divergence (mmJSD) model to state-of-the-art methods and show promising results
using our model in unsupervised, generative learning using a multimodal VAE on
two different datasets.

1 Introduction

Humans are able to process and relate information coming from different sources. Replicating this
ability is a longstanding goal in machine learning [2]. Multiple information sources offer the potential
of learning better and more generalizable representations, but pose challenges at the same time:
models have to be aware of complex intra- and inter-modal relationships, and be robust to missing
modalities [28, 17].

So far, supervised learning approaches have had the most success at connecting modalities and
translating between them [10, 5]. Indeed, multimodal data is expensive and sparse. This leads to a
setting in which only a minority of samples provide all possible observations, while for most of the
samples only a subset of observations is available. Despite the success of fully-supervised approaches,
unsupervised, generative approaches are another promising approach to capture the joint distribution
and flexibly support missing modalities.

In this work, we aim to learn probabilistic representations in an unsupervised manner that are able to
integrate information from complementary modalities, reduce uncertainty and ambiguity in redundant
sources, as well as handle missing modalities while making no assumptions about the nature of the
data, especially about the inter-modality relations.

One of the key challenges in a multimodal setting is the balancing of joint and unimodal latent
representations. Previous work [27, 12] had to rely on special training schemes with a mixture of
multimodal and unimodal objectives to deal with this difficulty. To overcome this limitation, we
base our approach directly in the Variational Bayesian framework and propose a new Evidence
Lower Bound (ELBO) for the multimodal setting. We introduce the idea of a dynamic prior for
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multimodal data, which enables the use of the Jensen-Shannon divergence for M distributions [13, 1]
and interlinks the unimodal probabilistic representations of the M observation types.

For the experiments, we concentrate on Variational Autoencoders [11, 20] that provide a framework
to jointly learn the parameters of the generative and the inference networks. In this setting, our
multimodal extension to variational inference implements a scalable method, capable of handling
missing observations. This allows for an architecture consisting of only M inference and generator
networks. The output of these inference networks are the unimodal posterior approximations to the
multimodal joint distribution.

2 Related Work

We focus on methods with the aim of modelling a joint latent distribution, instead of transferring
between modalities [29, 9]. [26, 21] concurrently implemented a multimodal VAE which is non-
scalable in terms of number of modalities. [21] introduced the idea that the distribution of the
unimodal approximation should be close to the multimodal approximation function. [26, 21, 25]
have in common that they use labels as a second modality. More recently, [27] and [12] proposed
scalable multimodal generative models by using a Product of Experts [6] as a joint distribution.
The Product of Experts (PoE) has problems optimizing the individual experts. Hence, they rely on
special training objectives to be able to better learn these unimodal distributions. [3] introduced
a local-global approach for VAEs. Their setting is weakly-supervised. They use groups, where a
group is defined as multiple samples with at least a single common attribute. Hence, they used a
combination of sample- and group based KL-divergence terms for training. [24] adapted this idea to
the multimodal setting where the local attributes are modality-specific, generative factors whereas
the global ones are the modality-independent, discriminative ones. However, they had to rely on
supervision for the discriminative factors. [8] also built on the same idea as [3], they created an
unsupervised, non-scalable approach for the bimodal setting.

As extension to the standard VAE [11], there is a line of research focusing on improving the prior
distribution. [23] introduced a mixture distribution of variational posterior as prior which is learnable
from pseudo-data. [15] and [4] use adversarial training schemes to perform variational inference.

3 Method: mmJSD

Let us consider again some dataset X consisting of N i.i.d. sets X = {X(i)}Ni=1 with every X(i)

being a set of M modalities X(i) = {x(i)
j }Mj=1. We assume that the data is generated by some

random process involving a hidden random variable z ∈ Rd, where d,D ∈ N. The generative
process decomposes into two stages: 1) a value z(i) is sampled from a prior distribution p∗(z) and 2)
a value x(i) is sampled from a conditional distribution p∗(x|z). Unfortunately, the true distributions
as well as the inter-modality dependencies are unknown. The only assumption we make about the
distributions is that they are from a parametric family of distributions pθ(z) and pθ(z|x). For the
case of data sets X(i), the ELBO can be written as follows:

ELBO(X) =Eqφ(z|X)[log pθ(X|z)]−KL(qφ(z|X)||pθ(z)) (1)

ELBO(XK) =EqφK (z|XK)[log(pθ(X|z)]−KL(qφK (z|XK)||pθ(z)) (2)

If one or more data types are missing, we would like to be able to approximate the true multimodal
posterior distribution pθ(z|X). However, we are only able to approximate the posterior by a
variational function qφK (z|XK). XK denotes a subset of X with K available modalities and
K ≤ M . For simplicity, we always use XK to symbolize missing data, although there is no
information about which or how many modalities are missing. Additionally, different modalities
might be missing for different samples. From Equation (2) we see that naively implementing a
multimodal VAE for M modalities which is able to handle any combination of missing and available
data typesXK would result in 2M different encoder networks. Nevertheless, this is considered a key
property of any multimodal system.

If only a subset of modalities is available as described in Equation (2), we would like the representation
of the subset of modalities to be close to the true posterior p(z|X) but if we restrict ourselves to a
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model following Equation (1), it cannot handle missing data. Hence, we need a model that is able to
handle missing data, while at the same time still approximating the true posterior distribution.

We propose the following:
Lemma 1. The multimodal ELBO defined in Equation (2) can be rewritten using the Jensen-Shannon-
divergence for multiple distributions and a dynamic prior:

ẼLBO(XK) = EqφK (z|XK)[log pθ(X|z)]− JSK+1
π ({qφzj

(z|xj)}Mj=1, p0(z)) (3)

The proof and a detailed derivation can be found in the appendix.

The JS-divergence for multiple distributions allows us to use a prior which is not only the static,
standard Gauss distribution N (0,I), but also the unimodal latent distributions qφ(z|xj) of the
available data types. This defines a dynamic prior as it is learned together with the unimodal
distributions during training. Lemma 1 allows us to approximate the true multimodal posterior
distribution pθ(z|X) by using the unimodal posterior variational approximations qφj (z|xj). Using
Equation (2) and Lemma 1, we see that any combination of missing and available data types can
approximate the true posterior distribution pθ(z|X) in a scalable way. Additionally, Lemma 1 allows
for the connection of the joint distribution qφ(z|X) to its unimodal latent approximations qφj (z|xj),
which enables us to directly learn the joint as well as the unimodal latent distributions. In previous
works, this direct connection is missing which is one of the reasons [12] and [27] have to rely on
difficult training procedures. In this work, this direct connection comes at the cost of a less tight
ẼLBO. According to [19], this is not necessarily a drawback.

Figure 1: Examples of generated faces based on text strings using mmJSD. We are able to generate
faces of high quality, while keeping some of the attributes like the gender: female faces are sampled
if ’male’ is not part of the string. The same is true for the smiling attribute. More specific and less
dominant attributes like eyeglasses are more difficult to learn, as seen in the third row, where not all
faces show a face with eyeglasses.

4 Experiments & Results

We carried out experiments on the dSprites dataset [16] and the CelebA faces dataset [14]. For the
two datasets, which both are image-based datasets, we create a second modality by generating text
from the labels. Different to previous research, we are using actual text and not just "0-1"-based
strings representing the labels. We compare the proposed method to a PoE-based model [27, 12]. For
more details about the PoE-model used, we refer the reader to the Appendix.

4.1 dSprites

dSprites, a dataset mostly used for disentangling tasks, offers control over all generating factors.
We are interested in the quality of the generated samples if a data type is missing. Evaluating the
quality of generated images is not straightforward. [22] report difficulties in evaluating images in
terms of their likelihood. Inspired by [25], we hence evaluate the quality by training an additional
classifier on the original training split of the dataset which classifies the generated samples according
to their attributes. We train a classifier for each modality. Hence, we classify text samples which were
generated based on the modality-invariant information inferred by images, and vice versa. The text
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Table 1: dSprites Evaluation: Classification accuracy of generated samples and latent represenations.
In Table 1a the classification accuracy of conditionally generated samples can be seen, in Table 1b
the classification accuracy of a classifier trained on a single batch of latent representations.

(a) Conditionally Generated Samples

Model Shape Scale Orientation Pos X Pos Y
Img Text Img Text Img Text Img Text Img Text

mmPoE 0.95 0.34 0.17 0.44 0.48 0.25 0.33 0.97 0.33 0.93
mmJSD 0.96 0.97 0.92 0.89 0.50 0.26 0.33 0.98 0.33 0.99

(b) Latent Representations

Model Shape Scale Orientation Pos X Pos Y

mmPoE
Img 0.38 0.70 0.25 0.991 0.97
Text 0.34 0.23 0.81 0.34 0.43
Joint 0.38 0.68 0.79 0.97 0.96

mmJSD
Img 1.0 1.0 0.443 0.998 0.999
Text 1.0 1.0 0.449 1.0 1.0
Joint 1.0 1.0 0.447 0.999 0.999

samples are a discrete version of the original values in text form. For details on the generative factors
we refer to [16]. The classification results for all attributes can be seen in Table 1a. Our proposed
model generates samples which better allow to re-infer the original values for most of the generative
factors.

To evaluate the quality of the learnt approximation functions, we train a classifier on their latent
representations: on the unimodal as well as the joint latent representations. For training and testing
we are using the the test set part of dSprites, which we split again into training and testing set. This
way, we ensure that images and text used for this downstream task did not influence the weights
of our network during training. We compare the proposed approach (see section 3) again to the
PoE approach. The results can be seen in Table 1b: The proposed method achieves similar or better
performance than the PoE-based method.

4.2 CelebA

We generate 64x64 images and text of length 256. More details on the architectures and dataset can be
found in the Appendix. Figure 1 shows qualitative results for images generated based on text samples.
Every row of images was generated based on the information inferred from the modality-invariant
information from the text left of each row. From this information, 10 images with randomly sampled
image-specific information were generated. Some attributes are more difficult to learn than others. At
first, rare attributes like eyeglasses are difficult to learn. Additionally, eyeglasses are a subtle attribute
which do not contribute much to the loss during training which makes it even more difficult. A bit
surprising, hair-colors seem difficult to learn as well while gender and smiling are well learnt.

5 Conclusion

In this work, we propose a novel generative model for learning with multimodal data. Our contribu-
tions are threefold: (i) we formulate a new multimodal ELBO using a dynamic prior, (ii) we propose
to use the JS-divergence for multiple distributions as a divergence measure for multimodal datasets.
This measure enables direct optimization of the unimodal as well as the joint latent approximation
functions, and (iii) we demonstrate that the proposed method does not need any additional training
objectives while reaching state-of-the-art or superior performance compared to two recently proposed
multimodal generative models.
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A Derivation of proposed method

Lemma 2 (Multimodal Dynamic Prior). The prior of the multimodal joint latent representation is
defined as follows:

pf (z) = f(qφ1
(z|x1), . . . , qφK (z|xK), p0(z)) (4)

where f is a function of probability distribution, p0(z) is a standard Gauss distribution of the form
N (0,I). qφ(z|xj) are unimodal posterior approximations of the available data types.

Proof. Any probability distribution can be a suitable choice for a prior distribution. The components
of the function f are themselves probability distributions. Hence, for pf (z) to be a proper probability
distribution, the only additional condition that needs to be satisfied by f is the integration to 1:∫
pf (z)dz = 1.

Lemma 3. If we define qφ(z|{xj}Mj=1) as a mixture model of the unimodal variational posterior
approximations qφj (z|xj), the KL-divergence of the multimodal variational posterior approximation
qφ(z|{xj}Mj=1) is an upper bound for the weighted sum of the KL-divergences of the unimodal
variational approximation functions qφj (z|xj).

ELBO(X) ≥ ẼLBO(X)

= Eqφ(z|X)[log pθ(X|z)]−
M∑
j=1

πjKL(qφj (z|xj)||pf (z)) (5)

Proof. Under the assumption

qφ(z|{xj}Mj=1) :=

M∑
j=1

πjqφj (z|xj) (6)

the KL-divergence in the equation for the multimodal dynamic prior can be written as the sum of
KL-divergences, which are less than or equal to the mixture distribution:
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KL(qφ(z|{xj}Mj=1)||pf (z)) = KL(

M∑
j=1

πjqφj (z|xj)||pf (z))

=

∫
z

 M∑
j=1

πjqφj (z|xj)

 log

(∑M
k=1 πkqφk(z|xk)

pf (z)

)
dz

≥
M∑
j=1

πj

(∫
z

qφj (z|xj)
M∑
k=1

πk log

(
qφk(z|xk)
pf (z)

)
dz

)

≥
M∑
j=1

πj

(∫
z

qφj (z|xj) log
(
qφj (z|xj)
pf (z)

)
dz

)

=

M∑
j=1

πjKL(qφj (z|xj)||pf (z)) (7)

Equation (5) follows directly from Equation (7).

Lemma 4. The ELBO formulation L̃(X) in Equation (5) can be written as a Jensen-Shannon
divergence, if f defines a function according to the specification of abstract means [18]:

ẼLBO(X) = Eqφ(z|X)[log pθ(X|z)]− JSM+1
π ({qφzj

(z|xj)}Mj=1, p0(z))

where JSM+1
π is the Jensen-Shannon divergence for M + 1 distributions with distribution weights

π = [π1, . . . , πM+1] and
∑
πi = 1 [13, 18].

Proof. Follows directly from Lemma 3 and the definition of the general JS-divergence for N distri-
butions [13] and the definition of abstract means [18].

A.1 Practical Implementations

A.1.1 Generalized Jensen-Shannon Divergence

[? ] generalized the Jensen-Shannon divergence to the definition of abstract means. Abstract means
are a suitable class of functions for aggregating information from different distributions while being
able to handle missing distributions. In the special case of a geometric mean, there exists a closed
form solution for JSNπ , if all involved distributions are Gaussian. For more details see [? ].

Following the common line of VAE research, the unimodal latent distributions qφj are assumed to be
Gaussian distributed qφj (z|xj) = N (µj(xj),Σj(xj)). The mean distribution can be written as:

ΣK = (
∑K
k=1 πkΣk)

−1 (8)

µK = ΣK

∑K
k=1 πkΣ

−1
k µk (9)

For Gaussian functions, the geometric mean distribution in Equation (8) can be seen as a weighted
PoE [6, 7]. Different to previous work using the PoE in a multimodal setting [? ? 24], in this work
the PoE is part of the dynamic prior distribution pf . Our formulation of the ELBO in Equation (8)
allows the optimization of the individual representations qj(z|xj), as well as the joint representation
which is equal to the dynamic prior.
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A.1.2 Factorization of Representations

We mostly base our derivation on the paper of [3]. [24] and [8] used a similar idea. We define a set
X(i) of modalities as group and analogous every modality as a sample of a group. We model every
xj to have its own modality-specific latent code sj ∈ S.

S = (sj ,∀xj ∈X(i)) (10)

From Equation (10), we see that S is the collection of all modality-specific latent variables for the set
X(i). Contrary to this, the modality-invariant latent code c is shared between all modalities xj of the
set X(i). c takes the role of the multimodal latent code z in the Theory section in the main paper.
Also like [3], we model the variational approximation function qφ(S, c) such that it decomposes into
a modality-dependent and -invariant part:

qφ(S, c) = qφS
(S|X)qφc(c|X) (11)

Additionally, we model qφS such that it factorizes among the different modalities:

qφS
(S|X) =

M∏
j=1

qφsj
(sj |xj) (12)

From Equation (12) and from the fact that the multimodal relationships are only modelled by the
latent factor c, it is reasonable to only apply the multimodal modelling from the Theory section to c.

It follows:

ELBO(X) =Eqφ(z|X)[log pθ(X|z)]−KL(qφ(z|X)||pθ(z))
=Eqφ(S,c|X)[log pθ(X|S, c)]−KL(qφ(S, c|X)||pθ(S, c))
=Eqφ(S,c|X)[log pθ(X|S, c)]−KL(qφS

(S|X)||pθ(S))−KL(qφc(c|X)||pθ(c))

=Eqφ(S,c|X)[log pθ(X|S, c)]−
M∑
j=1

KL(qφsj
(sj |xj)||pθ(sj))−KL(qφc(c|X)||pθ(c))

(13)

In Equation (16), we can rewrite the KL-divergence which includes c using the multimodal dynamic
prior and the JS-divergence for multiple distributions:

ẼLBO(X) =Eqφ(S,c|X)[log pθ(X|S, c)]

−
M∑
j=1

KL(qφ(sj |xj)||pθ(sj))− JSM+1
π ({qφcj

(c|xj)}Mj=1, p0(c)) (14)

The expectation over qφ(S, c|X) can be rewritten as an expectation over qφc(X|c) as an expectation
over qφsj

:
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Eqφ(S,c|X)[log pθ(X|S, c)] =
∫
c

∫
S

qφ(S, c|X) log pθ(X|S, c)dSdc

=

∫
c

qφc(c|X)

∫
S

qφS
(S|X) log pθ(X|S, c)dSdc

=

∫
c

qφc(c|X)

M∑
j=1

∫
sj

qφsj
(sj |xj) log pθ(xj |sj , c)dsjdc

=

M∑
j=1

∫
c

qφc(c|X)

∫
sj

qφsj
(sj |xj) log pθ(xj |sj , c)dsjdc

=

M∑
j=1

Eqφc (c|X)[Eqφsj (sj |xj)
[log pθ(xj |sj , c)]] (15)

From Equation (15), the final form from the paper follows directly:

ẼLBO(X) =

M∑
j=1

Eqφc (c|X)[Eqφsj (sj |xj)
[log pθ(xj |sj , c)]]

−
M∑
j=1

KL(qφsj
(sj |xj)||pθ(sj)) (16)

− JSM+1
π ({qφcj

(c|xj)}Mj=1, p0(c))

B Data

(a) dSprites image

*square,
zero point
eight, left, upper
mid*************
*********

(b) dSprites text

Figure 2: Example of a data pair for the MNIST data set. From the labels, we generate strings of
length 32 consisting of the number as word and blank spaces. The starting position of the word in
this 32 length string is chosen randomly. For dSprites, we generate strings of length 64 consisting of
the discretized generative attributes and fill the remaining space with ∗.

B.1 dSprites

To have a bimodal dataset, we created text from the generative factors. The shape attribute is just
converted to a string (square, ellipse, heart). The scale factor is digit-wise converted into words. E.g.
a scale factor of 0.5 becomes zero point five. For the orientation attribute, we create 4 text realizations
from the 40 values between 0 and 2π: upright, left, upside down, right. The same applies to the
position in both directions which originally is a value between 0 and 1. We divide the x-direction
into left, mid, right and the y-direction into lower, mid, upper. We concatenate the strings from the
attributes into a comma-separated list. We always create strings of length 64. As the atribute string is
not of length 64, we fill the remaining space by ∗ and choose a random starting position. A sample
pair from this dataset can be seen in Figure 2.

B.2 CelebA

Every face in the dataset is labelled with 40 attributes. To generate the second modality, we create
text strings from these attributes. All the attribute names are concatenated in a comma-separated list

9



if the attribute is present in a face. Underline characters are replaced by a blank space. We create
strings of length 256. If a given face has only a small number of attributes which would result in a
short string, we fill the remaining space with the asterix character ∗.

C Experiments

C.1 PoE-based Model

The PoE-based model used for the MNIST and dSprites experiments is adopted from [27, 12]. They
both use a combination of unimodal and joint divergence terms where the joint representations is the
output of a PoE. [27] uses a subsampling of all datatypes if more than two datatypes are available.
The resulting training objective can be written as follows:

L(X) =

M∑
j=1

Eqφ(z|X)[log pθ(xj |z)]

−
M∑
j=1

KL(qφj (z|xj)||pθ(z))−KL(PoE({qφj (z|xj)}Mj=1)||pθ(z)) (17)

In case of a factorized representation like we use it, Equation (18) changes as follows:

L(X) =

M∑
j=1

Eqφc (c|X)[Eqφsj (sj |xj)
[log pθ(xj |sj , c)]]

−
M∑
j=1

KL(qφsj
(sj |xj)||pθ(sj)) (18)

−
M∑
j=1

KL(qφc(c|xj)||pθ(c)) (19)

−KL(PoE({qφj (z|xj)}Mj=1)||pθ(z))
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