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Abstract

Recent research efforts enable the study of natural language grounded navigation
in photo-realistic environments, e.g., following natural language instructions or
dialog. However, data scarcity is a critical issue in these tasks, as conducting
human demonstrated language interactions in the simulator is still expensive and
time-consuming and it is impractical to exhaustively collect samples for all variants
of the navigation tasks. Therefore, we introduce a generalized multitask naviga-
tion model that can seamlessly be trained on language-grounded navigation tasks
such as Vision-Language Navigation (VLN) and Navigation from Dialog History
(NDH). Benefiting from richer natural language guidance, the multitask model
can efficiently transfer knowledge across related tasks. Experiments show that it
outperforms the single-task model by 7% (success rate) on VLN and 61% (goal
progress) on NDH, establishing the new state of the art for NDH.

1 Introduction

Navigation in visual environments by following natural language guidance [10] is a fundamental
capability of intelligent robots that simulate human behaviors, because humans can easily reason
about the language guidance and navigate efficiently by interacting with the visual environments.
Recent efforts [3, 6, 19] empower large-scale learning of natural language grounded navigation that
is situated in photo-realistic simulation environments.

Nevertheless, data scarcity is still a critical issue in these tasks. Unlike vision-only navigation
tasks [16, 23, 15, 14] where episodes can be exhaustively sampled in simulation, natural language
grounded navigation is supported by human demonstrated interaction in natural language. It is
time-consuming and impractical to fully collect all the samples for individual tasks. Some data
augmentation techniques [9, 18] have been proposed to alleviate data scarcity. For example, a speaker
model can be trained to generate instructions on newly sampled trajectories [9], but natural language
generation itself is extremely challenging. Recent work [11] indicates that machine-generated
instructions suffer from the quality issue and thus only a small fraction of them is useful.

In this paper, we aim at resolving the data sparsity with multitask learning, leveraging and transferring
knowledge across tasks. We propose a generalized multitask model for natural language grounded
navigation tasks such as Vision-Language Navigation (VLN) and Navigation from Dialog History
(NDH), where all the learnable parameters are shared and jointly trained on both tasks. We also adopt
an interleaved multitask data sampling strategy to prevent the shared model from being dominated
by one task. Experiments on VLN and NDH show that the multitask navigation model can not
only efficiently execute different language guidance in indoor environments but also outperform the
single-task baseline models by a large margin on both tasks. Together with specialized reward shaping,
our model achieves new state-of-the-art performance on NDH. To the best of our knowledge, we
introduce the first natural language grounded multitask navigation model and validate its effectiveness
on VLN and NDH tasks.

∗Equal contribution. Work was done when Xin Wang was interning at Google.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Language Encoder

Panoramic   
Features

 

Action Predictor  

Word Embedding

Trajectory EncoderCM-ATT

NDH Dialog
or

VLN Instruction 

Multitask 
Data Sampling

Paired Demo Path

Figure 1: Natural Language Grounded Multitask Navigation Framework

2 Background

Vision-Language Navigation. Vision-Language Navigation [3, 5] task requires an embodied agent
to navigate in photo-realistic environments to carry out natural language instructions. The agent
is spawn at an initial pose p0 = (v0, φ0, θ0), which includes the spatial location, heading and
elevation angles. Given a natural language instruction X = {x1, x2, ..., xn}, the agent is expected to
perform a sequence of actions {a1, a2, ..., aT } and arrive at the target position vtar specified by the
language instruction X , which describes step-by-step instructions from the starting position to the
target position. In this work, we consider VLN task defined for Room-to-Room (R2R) [3] dataset.
The conventional metrics used to evaluate agent performance on VLN include success rate (SR),
navigation error (NE), path length (PL), SPL [2] and CLS [13].

Navigation from Dialog History. Most recently, a Cooperative Vision-and-Dialog Navigation
(CVDN) dataset [19] is introduced towards interactive language assistance for indoor navigation,
which consists of over 2k embodied, human-human dialogs situated in photo-realistic home envi-
ronments. The task of Navigation from Dialog History (NDH) is defined as: given a target object
to and a dialog history between humans cooperating to perform the task, the embodied agent must
infer navigation actions towards the goal room that contains the target object. The dialog history is
denoted as < to, Q1, A1, Q2, A2, ..., Qi, Ai >, including the target object to, the questions Q and
answers A till the turn i (0 ≤ i ≤ k, where k is the total number of Q-A turns from the beginning to
the goal room). The agent, located in p0, is trying to move closer to the goal room by inferring from
the dialog history that happened before.

Distributed Actor-Learner Navigation Learning Framework. To train models for the various
language grounded navigation tasks like VLN and NDH, we develop a distributed actor-learner
learning infrastructure2. The framework design is inspired by IMPALA [8] and uses its off-policy
correction method called V-trace to efficiently scale reinforcement learning methods to thousands
of machines. The framework additionally supports a variety of supervision strategies important for
navigation tasks such as teacher-forcing [9], student-forcing [9] and mixed supervision [19]. The
framework is built using TensorFlow [1] and supports ML accelerators (GPU, TPU).

3 Language-Grounded Multitask Navigation

3.1 Generalized Navigation Model

We use the reinforced cross-modal matching (RCM) model [21] as the backbone and present a
generalized navigation model in Figure 1 for multitask reinforcement learning, which we refer as
Multitask-RCM (MT-RCM). To make the MT-RCM model generalizable and seamlessly transfer
across tasks, we share all the learnable parameters for both VLN and NDH, including the joint word
embedding layer, the language encoder, the trajectory encoder, the cross-modal attention module
(CM-ATT), and the action predictor.

2The identity is not disclosed to respect the anonymity of the submission.
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Table 1: Average agent progress towards goal location when trained using different rewards and
mixed supervision strategy. to is the target object. Qi and Ai are the question asked by the navigator
and the answering response from the Oracle at turn i.

Model Inputs Goal Progress (m)
t0 Ai Qi A1:i−1;Q1:i−1 Val Seen Val Unseen

Baselines

Shortest-Path Agent 9.52 9.58
Random Agent 0.42 1.09

Seq-2-Seq [19]

3 5.71 1.29
3 3 6.04 2.05
3 3 3 6.16 1.83
3 3 3 3 5.92 2.10

Ours

RCM (distance to goal location)

3 4.18 0.42
3 3 4.96 2.34
3 3 3 4.60 2.25
3 3 3 3 5.02 2.58

RCM (distance to goal room)

3 6.97 1.25
3 3 6.92 2.69
3 3 3 6.47 2.69
3 3 3 3 6.49 2.64

3.2 Interleaved Multitask Data Sampling

To avoid overfitting to individual tasks, we adopt an interleaved multitask data sampling strategy to
train the model. Particularly, each data sample within a mini-batch can be any data sample from either
task, so that the VLN instruction-trajectory pairs and the NDH dialog-trajectory pairs are interleaved
in a mini-batch though they may have different learning objectives.

3.3 Reward Shaping

Distance to Goal Location. Following prior art [20, 21], we first implement a discounted cumulative
reward function R for the VLN and NDH tasks:

R(st, at) =

T∑
t′=t

γt
′−tr(st′ , at′), where r(st′ , at′) =

{
d(st′ , vtar)− d(st′+1, vtar) if t′ < T

1[d(sT , vtar) ≤ dth] if t′ = T

(1)
where γ is the discounted factor, d(st′ , vtar) is the distance between st and the target location vtar,
and dth is the maximum distance from vtar that the agent is allowed to terminate for success.

Distance to Goal Room. Different from VLN, NDH is essentially room navigation instead of point
navigation because the agent is expected to reach a room that contains the target object. Suppose the
goal room is occupied by a set of nodes {vi}N1 , we replace the distance function d(st, vtar) in Eq. 1
with the minimum distance to the goal room droom(st, {vi}N1 ) for NDH:

droom(st, {vi}N1 ) = min
1≤i≤N

d(st, vi) (2)

4 Experiments

Implementation Details. The models were trained using a mixed learning strategy wherein some
episodes in the batch used behavioral cloning [4] while the rest of the episodes used REINFORCE
policy-gradient updates [22]. The language encoder uses a bidirectional-LSTM [17]. Similar to
benchmark models [9, 21, 12, 11], the visual encoder at each time step t encodes a 360-degree
panoramic view of the current location discretized into k view angles (k = 36, 3 elevations by 12
headings at 30-degree intervals). The action space, which is common to VLN and NDH tasks, consists
of feasible navigable directions from the current location. The vocabulary used for joint-training is
the union of the two tasks’ vocabularies.
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Table 2: Comparison of agent performance when trained separately vs. jointly on VLN and NDH
tasks. All the reported results are averages of 3 independent runs.

NDH Evaluation VLN Evaluation

Fold Task(s) Trained Inputs for NDH Goal Progress PL NE SR SPL CLS
t0 Ai Qi A1:i−1;Q1:i−1 ↑ ↓ ↑ ↑ ↑

Val Seen

NDH only

3 6.97
3 3 6.92
3 3 3 6.47
3 3 3 3 6.49

VLN only 10.75 5.09 52.39 48.86 63.91

NDH+VLN

3 3.00 11.73 4.87 54.56 52.00 65.64
3 3 5.92 11.12 4.62 54.89 52.62 66.05
3 3 3 5.43 10.94 4.59 54.23 52.06 66.93
3 3 3 3 5.28 10.63 5.09 56.42 49.67 68.28

Val Unseen

NDH only

3 1.25
3 3 2.69
3 3 3 2.69
3 3 3 3 2.64

VLN only 10.60 6.10 42.93 38.88 54.86

NDH+VLN

3 1.69 13.12 5.84 42.75 38.71 53.09
3 3 4.01 11.06 5.88 42.98 40.62 54.30
3 3 3 3.75 11.08 5.70 44.50 39.67 54.95
3 3 3 3 4.36 10.23 5.31 46.20 44.19 54.99

Reward Shaping for NDH task. As discussed in Sec. 3.3, we first performed studies to shape the
reward for the NDH task. We replicate the setup used in Thomason et al. [19] for studies—goal
progress (in meters) is used as the main evaluation metric, mixed supervision path is used for episodes
with behavioral cloning and ablation studies are performed by restricting the access to dialog history
by the navigation agents. The results in Table 1 indicate that our proposed reward that incentivizes
the agent to get closer to the goal room outperforms the goal-oriented reward.

Multitask learning for VLN and NDH tasks. Table 2 shows the results of jointly training MT-RCM
model on VLN and NDH tasks. Firstly, the MT-RCM model jointly trained on VLN and NDH indeed
learns a more generalized navigation policy, which outperforms its single-task baseline by a large
margin on the previous unseen environments of both tasks. Moreover, the gap between the agent’s
performance on previously seen and unseen environments is significantly reduced. For instance,
when the full history of the dialog is provided to the agent, the performance gap on seen and unseen
environments in the NDH task reduces from 2.84m to 0.92m. Similar behavior on VLN is observed
as well. Secondly, we see a consistent and gradual increase in the success rate of the agent on the
VLN task as it is trained on paths with more dialog history from the NDH task. This shows that the
agent benefits from more complete information about the path, which in turn implies the importance
given by the agent to the language instructions in the task. Thirdly, we note here that all the results on
NDH validation unseen dataset beat the state-of-the-art results [19] by a large margin. When provided
access to full dialog history, MT-RCM outperforms the state-of-the-art goal progress of 2.10m by
more than 100%. At the same time, MT-RCM outperforms the equivalent RCM baseline [21] of
40.6% success rate by more than 13% (relative measure) on R2R validation unseen dataset. Finally,
we conducted an experiment to study the importance of parameter sharing during multitask learning,
which is illustrated in Table 3 in Appendix.

5 Conclusion

Our generalized language-grounded multitask model outperforms the equivalent baseline for the VLN
task and establishes a new state of the art for the NDH task. The interleaved multitask data sampling
strategy prevents overfitting to a single task and obtains simultaneous improvement on both the tasks.
We believe that the multitask learning framework can further be extended by adapting MT-RCM on
other language-grounded navigation datasets like Touchdown [5] and TalkTheWalk [7].
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A Appendix

One of the main advantages of multitask learning is that under-represented tokens in each of the
individual tasks get a significant boost in the number of training samples. Figure 2 illustrates that
tokens with less than 40 occurrences end up with sometimes more than 300 occurrences during
joint-training.
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Figure 2: Selected tokens from the vocabulary for VLN (top) and NDH (bottom) tasks which gained
more than 40 additional occurrences in the training dataset due to joint-training.

Table 3: Comparison of agent performance when language instructions are encoded by separate vs.
shared encoder for VLN and NDH tasks. All the reported results are averages of 3 independent runs.

NDH Evaluation VLN Evaluation
Fold Language Encoder Inputs for NDH Goal Progress PL NE SR SPL CLS

t0 Ai Qi A1:i−1;Q1:i−1 ↑ ↓ ↑ ↑ ↑

Val Seen

Shared

3 3.00 11.73 4.87 54.56 52.00 65.64
3 3 5.92 11.12 4.62 54.89 52.62 66.05
3 3 3 5.43 10.94 4.59 54.23 52.06 66.93
3 3 3 3 5.28 10.63 5.09 56.42 49.67 68.28

Separate

3 2.85 11.43 4.81 54.66 51.11 65.37
3 3 4.90 11.92 4.92 53.64 49.79 61.49
3 3 3 5.07 11.34 4.76 55.34 51.59 65.52
3 3 3 3 5.17 11.26 5.02 52.38 48.80 64.19

Val Unseen

Shared

3 1.69 13.12 5.84 42.75 38.71 53.09
3 3 4.01 11.06 5.88 42.98 40.62 54.30
3 3 3 3.75 11.08 5.70 44.50 39.67 54.95
3 3 3 3 4.36 10.23 5.31 46.20 44.19 54.99

Separate

3 1.79 11.85 6.01 42.43 38.19 54.01
3 3 3.66 12.59 5.97 43.45 38.62 53.49
3 3 3 3.51 12.23 5.89 44.40 39.54 54.55
3 3 3 3 4.07 11.72 6.04 43.64 39.49 54.57
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